
6/26/2019 Touch-to-focus API Draft (to send out) - Google Docs

https://docs.google.com/document/d/1GCE6N2F75G7zF2S7iUUddicsXx0ydJ4B8mIQVvU4rEo/edit# 1/9

 

CameraX 

CameraX: Touch-to-focus API  
 

Status :  Draft 
Created:  2019-6-10 
 

Objective 
Provides a simple API that developers can specify only an X, Y and the View, and then 
touch-to-focus just works like magic.  The API should also be flexible that developers can specify 
advanced options.  

Background 
Most camera apps need to have touch-to-focus capability but it is difficult to implement using 
Camera2 API.  It has the following challenges: 

(1)  Translating the view coordinate into the sensor coordinates is hard: 
Device orientation / sensor orientation / front facing mirroring / crop region / sensor aspect 
ratio / view cropping need to be considered.  

(2)   The Camera2 API flow is complicated and is not well documented.  
Developers need to set AF/AF/AWB regions, and then set CONTROL_AF_MODE to 
AUTO , and then trigger Set CONTROL_AF_TRIGGER to START and more.  You can 
imagine how difficult it is to implement it correctly.  

(3) Too many options  
Developers are asked to specify the size of metering and focus area and the weights. 
Also, developers need to reset the areas when necessary. Most of the time they simply 
want the best default options.  

The new API aims to handle all these challenges for developers.  

Overview 
This API will be exposed at  Camera Control .  Developer can get the CameraControl via  

CameraX . getCameraControl ( LensFacing ); 

 
The new API offers below advantages: 

(1) No coordinate translation at Apps side.  
Apps just pass X, Y and View , and that’s all.  

 

http://go/camerax-cameracontrol


6/26/2019 Touch-to-focus API Draft (to send out) - Google Docs

https://docs.google.com/document/d/1GCE6N2F75G7zF2S7iUUddicsXx0ydJ4B8mIQVvU4rEo/edit# 2/9

 

(2) Best touch-to-focus flow which works on all camera2 devices. 
We use best practice touch-to-focus flow to implement it and have tests in our test lab to 
make sure it works on most devices.  

(3) Simple yet powerful  
Use the best default options for developers so that they don’t have to specify too much 
details.  Meanwhile they have the flexibility to set the options. Options like the metering 
area’s width , the weight and when to cancel the touch-to-focus action.  Apps can also 
register a callback to be notified when the focus is done.  

 
Code snippet that demonstrates minimized codes required for touch-to-focus. 

MeteringPointFactory  factory  =   new   TextureViewMeteringPointFactory ( textureView ); 

MeteringPoint  point  =  factory . createPoint ( x ,   y ); 

MeteringAction  action  =   MeteringAction . Builder . from ( point ). build (); 

CameraX . getCameraControl ( lensFacing ). startFocusAndMetering ( action ); 

 
CameraX uses the builder pattern in order to both keep the API simple and allow more options 
available for developers.  In the above code snippet,  all it needs are just a textureView instance 
and x , y from the textureView.  
 
CameraX also provides other options available like below.  

MeteringAction  action  =   MeteringAction . Builder . from ( meteringPoint1 ) 

              . addPoint ( meteringPoint2 )    // could have multiple addPoint call 

              . setAreaSize ( 0.2f )    // 0~  1.0f  

              . setWeight ( 1.0f )     // 0 ~1.0f     

              . setMode ( MeteringMode . AF_AE_AWB ) 

              . setAutoFocusCallback ( new   OnAutoFocusListener (){ 

                    public   void  onFocusCompleted ( boolean  isSuccess )   { 

                    } 

              }) 

              // auto calling cancelFocusAndMetering in 5 sec.  

              . setAutoCancelDuration ( 5 ,   TimeUnit . Second ) 

              . build (); 

 

Detailed Design 

Create the MeteringPoint : Factory for the different needs 
CameraX supports multiple ways to create MeteringPoint. There are 3 kinds of factory to create a 
MeteringPoint corresponding to 3 scenarios respectively: 

 



6/26/2019 Touch-to-focus API Draft (to send out) - Google Docs

https://docs.google.com/document/d/1GCE6N2F75G7zF2S7iUUddicsXx0ydJ4B8mIQVvU4rEo/edit# 3/9

 

(1) Preview using TextureView 

// TextureViewMeteringPointFactory is in View module 

MeteringPointFactory  factory  =   new   TextureViewMeteringPointFactory ( textureView ); 

MeteringPoint  point  =  factory . createPoint ( x ,   y );  

 

For TextureView (which most basic camera apps use), no coordinates translation is required at 
app side.  A TextureView, X and Y are all it needs.   It is not only the simplest but also the 
most complete form  because it takes into account the conditions that SurfaceTexture could be 
cropped/scaled/rotated inside TextureView via #setTransform.  Basically it can be translated 
perfectly WYSIWYG to the sensor coordinates without any efforts from apps .  
 
Active Preview UseCase is chosen for the FOV and final sensor coordinates will be adjusted by 
the aspect ratio in this FOV. FOV is required for the final conversion because the sensor FOV 
aspect ratio could mismatch the chosen FOV.  
 
Note: TextureViewMeteringPointFactory is put in the CameraX view module.  

(2) Preview using GLSurfaceView or SurfaceView.  (SurfaceView not 
supported in CameraX yet)  

// For GLSurfaceView or SurfaceView, same XY orientation as the View(and display 

orientation).  

MeteringPointFactory  factory  =   new   DisplayOrientedMeteringPointFactory ( viewWidth , 

viewHeight ); 

MeteringPoint  point  =  factory . createPoint ( x ,   y );  

 
DisplayOrientedMeteringPointFactory is used for translating view x/y in display orientation. 
View’s width and height is passed to create the factory.  It works well to create a point by x, y if 
the camera preview fills the whole view without any cropping or rotating. CameraX is responsible 
for taking care of the device orientation, mirroring, sensor orientation to map it to sensor 
coordinates.  
 
if preview is cropped or rotated, it is apps’ duty to correctly transform x, y and viewWidth , 
viewHeight  into the correct value.  
 
Active Preview UseCase is chosen for the FOV and final sensor coordinates will be adjusted by 
the aspect ratio in this FOV. 
 
 

 



6/26/2019 Touch-to-focus API Draft (to send out) - Google Docs

https://docs.google.com/document/d/1GCE6N2F75G7zF2S7iUUddicsXx0ydJ4B8mIQVvU4rEo/edit# 4/9

 

 

(3) Sensor coordinates / ImageAnalysis  

// XY has the same orientation as the sensor.  

MeteringPointFactory  factory  =   new   SensorOrientedMeteringPointFactory ( width , 

height ); 

MeteringPoint  point  =  factory . createPoint ( x ,   y );  

 
There are two scenarios for this:  
#1  Apps already translated the point to sensor coordinates , they want to pass in the sensor 
coordinates directly to our touch focus API. In this case, app can call it like 
MeteringPointFactory  factory  =   new   SensorOrientedMeteringPointFactory ( sensorWidth , 

sensorHeight );  

MeteringPoint  point  =  factory . createPoint ( sensorX ,   sensorY );  

If they are using normalized coordinates like 0 to 1,  they can use 1.0 as the width / height.  
 

#2 Apps use ImageAnalysis to detect something (like people, faces, etc.)  and set focus to that 
objects.  
MeteringPointFactory  factory  =   new   SensorOrientedMeteringPointFactory ( imageWidth , 

imageHeight, imageAnalysis );  

MeteringPoint  point  =  factory . createPoint ( imageX ,   imageY );  

Trigger Touch-To-Focus action  
After action is built, pass it to below method to start the touch-to-focus action.  

getCameraControl ( lensFacing ). startFocusAndMetering ( action );  

 
Apps can call below method to cancel the metering actions.  

getCameraControl ( lensFacing ). cancelFocusAndMetering (); 

Coordinates translation 
This section describes the details regarding how CameraX translates the coordinates to the final 
sensor coordinates.  
 

 



6/26/2019 Touch-to-focus API Draft (to send out) - Google Docs

https://docs.google.com/document/d/1GCE6N2F75G7zF2S7iUUddicsXx0ydJ4B8mIQVvU4rEo/edit# 5/9

 

 
The Above diagram illustrates the main flow of the coordinates translation.  The 3 
MeteringPointFactory we introduced in previous section will all convert to the  normalized XY in 
crop region  and then follow the same procedure to be translated to the final sensor coordinates.  
Let’s explain some steps below: 

TextureViewMeteringPointFactory:  TextureView X, Y 
See below diagram for the transform flow.  
TextureView#getTransform:    used to transform the SurfaceTexture inside TextureView.  
If not set, the SurfaceTexture is scaled to fill the Textureview(Aspect ratio could be wrong). 
CameraX uses the inverse of this transform to convert a (X, Y) in TextureView to the (X2, Y2) in 
the natural orientation SurfaceTexture (whose width and height is equal to the TextureView), We 
can then convert the (X2,Y2) to the texture coordinates (S,T).  
 
SurfaceTexture#getTransformMatrix:  used to translate the texture coordinates to the correct 
texture coordinates in source. Camera streamed SurfaceTexture will set this transform so that the 
SurfaceTexture can be displayed correctly in natural orientation.  
 
CameraX utilizes this transform matrix to convert the (S, T) in previous stage to the (S2, T2) ,  the 
texture coordinates in unadjusted SurfaceTexture. Finally,  we adjust the coordinates to the 
normalized crop region XY which the left-top is (0,0) and the right-bottom is (1,1). 

 



6/26/2019 Touch-to-focus API Draft (to send out) - Google Docs

https://docs.google.com/document/d/1GCE6N2F75G7zF2S7iUUddicsXx0ydJ4B8mIQVvU4rEo/edit# 6/9

 

Note: The SurfaceTexture can be retrieved from active Preview UseCase. 
 

 

Sample codes are  here 
 

DisplayOrientedMeteringPointFactory: Display oriented XY  
This factory creates the point by the view x, y which is in display orientation. If x , y is view’s x, y, 
then you should set the width / height of the factory to be the view width / view height. If you are 
using normalized coordinate like 0 to 1,  the width / height of factory should be 1.0f.  
 
if preview is cropped or rotated, it is apps’ duty to correctly transform x, y and viewWidth , 
viewHeight  into the correct value.  
 

 

https://paste.googleplex.com/6139186501386240


6/26/2019 Touch-to-focus API Draft (to send out) - Google Docs

https://docs.google.com/document/d/1GCE6N2F75G7zF2S7iUUddicsXx0ydJ4B8mIQVvU4rEo/edit# 7/9

 

 
 
 
CameraX translates the normalized view points to the normalized crop region XY by using the 
display orientation , the sensor orientation and front camera mirroring.  The reason CameraX 
uses display orientation instead of the rotation degree returned in 
Preview#OnPreviewOutputUpdateListener is because the View XY has the same orientation as 
the display orientation.  
 

SensorOrientedMeteringPointFactory: Sensor oriented XY 
It is similar as DisplayOrientedMeteringPointFactory except that it is in sensor orientation. 
CameraX assumes it is already rotated / mirrored correctly and just map it into the final sensor 
coordinates.  

Normalized Crop Region XY FOV adjustment  
We follow  https://source.android.com/devices/camera/camera3_crop_reprocess  to adjust the 
normalized coordinates by the current FOV compared with crop region FOV.  

What if the View itself is covered by other Views or the boundary? 
In this case,  the app should get the X, Y from the View itself (GLSurfaceView or TextureView) 
instead of getting X, Y in the container which contains the View.  This will eliminate the need for 
extra XY conversion.  

Options  
All 3 builder creation methods shared the same options.  Below are all the options exposed in 
MeteringAction.Builder: 

 

https://source.android.com/devices/camera/camera3_crop_reprocess


6/26/2019 Touch-to-focus API Draft (to send out) - Google Docs

https://docs.google.com/document/d/1GCE6N2F75G7zF2S7iUUddicsXx0ydJ4B8mIQVvU4rEo/edit# 8/9

 

 

// To add extra metering point. If device doesn't support multiple region  

// , this will be a no-ops. 

MeteringAction . Builder  addPoint ( metringPoint ); 

 

// To decides which metering region should be enabled. If AF is not enabled, AUTO 

// FOCUS will not be triggered.  

MeteringAction . Builder  setMode ( MeteringMode  mode ); 

enum   MeteringMode   { 

   AF_AE_AWB ,    // default 

   AF_AE ,  

   AE_AWB ,  

   AF_AWB ,  

   AF_ONLY ,  

   AE_ONLY ,  

   AWB_ONLY 

}    

 

// Sets the auto focus listeners. onFocusCompleted() is called when the focus is 

done.  

MeteringAction . Builder  setAutoFocusCallback ( OnAutoFocusListener  listener ); 

interface   OnAutoFocusListener   { 

    void  onFocusCompleted ( boolean  isFocused ); 

} 

// Sets the metering width and height, value is ranged from 0(0%) to 1.0 (100%) ,  

// the default/minimal value is 0.1 (10%) , value that is below 0.1 will be set as 

// 0.1.  

MeteringAction . Builder  setAreaSize ( float  size ); 

 

// Sets the metering region weight, ranged from 0 to 1.  The default value is 1  

// (max).  

MeteringAction . Builder  setWeight ( float  weight ); 

 

// Sets if CameraX should call cancelFocusAndMetering() in the given duration.  

// By default a 5 second auto cancel duration is set.  

MeteringAction . Builder  setAutoCancelDuration ( long  duration ,   TimeUnit  timeUnit );  

 

// Disable auto clear .  

MeteringAction . Builder  disableAutoCancel (); 

 

Touch-to-focus flow using camera2  
1. User taps an X, Y in view.  
2. App translates the view coordinates to coordinates on the sensor active array (see  coordinates 

translation  )  

 



6/26/2019 Touch-to-focus API Draft (to send out) - Google Docs

https://docs.google.com/document/d/1GCE6N2F75G7zF2S7iUUddicsXx0ydJ4B8mIQVvU4rEo/edit# 9/9

 

3.  App calculates a rectangle that surrounds that point to use as a metering region.  Use 10% of 
the field of view by default.  

4. App constructs a new capture request with: 
1. Set the CONTROL_AF_REGIONS, CONTROL_AE_REGIONS, and 

CONTROL_AWB_REGIONS to that rectangle with weights ( some regions could be 
disabled by the options).  

2. Set CONTROL_AF_MODE to AUTO 
5. The app sets this request as the repeating request, and also submits a single request with the 

same settings plus 
1. Set CONTROL_AF_TRIGGER to START 

6. With those settings, the camera device will trigger an autofocus sweep with the selected 
region, along with re-metering for AE and AWB as well. 

7. If AutoClear is enabled ,  CameraX will reset the region and cancel the 
CONTROL_AF_TRIGGER and set CONTROL_AF_MODE back to CONTINOUS_AF (if 
supported)  , otherwise it will clear the action when camera is closed or app explicitly call 
clearMeteringArea (); 

 
 

Revision History  
 

version date description 

1.0 2019/6/10 Initial version 

2.0 2019/6/19 ● Add MeteringPointFactory interface and 3 
implementations 

○ TextureViewMeteringPointFactory(View module) 
○ DisplayOrientedMeteringPointFactory( Core )  
○ SensorOrientedMeteringPointFactory ( Core )  

● To remove View dependency in Core. 
TextureViewMeteringPointFactory is put in View module.  

● The builder now requires only a MeteringPoint to be 
constructed.   One builder creation method only but there 
are 3 types of MeteringPointFactory.  

 

 


