
Received October 19, 2021, accepted October 26, 2021, date of publication October 28, 2021, date of current version November 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3124020

Enhancing Differential Privacy for Federated
Learning at Scale
CHUNGHUN BAEK 1, SUNGWOOK KIM 2, DONGKYUN NAM1, AND JIHOON PARK1
1Samsung Research, Seoul 06765, South Korea
2Department of Information Security, Seoul Women’s University, Seoul 01797, South Korea

Corresponding author: Sungwook Kim (kim.sungwook@swu.ac.kr)

The work of Sungwook Kim was supported in part by the Institute of Information & Communications Technology Planning &
Evaluation (IITP) Grant funded by the Korean Government (MSIT) under Grant 20210007270012002 (A Study on Cryptographic
Primitives for SNARK, 90%); and in part by the Research Grant funded by Seoul Women’s University under Grant 2020-0454 (Research
on Privacy-Preserving Data Analysis, 10%).

ABSTRACT Federated learning (FL) is an emerging technique that trains machine learning models across
multiple de-centralized systems. It enables local devices to collaboratively learn a model by aggregating
locally computed updates via a server. Privacy is a core aspect of FL, and recent works in this area are
advancing the privacy guarantee of an FL network. To ensure rigorous privacy guarantee for FL, prior works
have focused on methods to securely aggregate local updates and provide differential privacy (DP). In this
paper, we investigate a new privacy risk for FL. Specifically, FL may frequently encounter unexpected user
dropouts because it is implemented over a large-scale network. We first observe that user dropouts of an
FL network may lead to failure in achieving the desired level of privacy protection, i.e., over-consumption
of the privacy budget. Subsequently, we develop a DP mechanism robust to user dropouts by dynamically
calibrating noise with account of the dropout rate. We evaluate the proposed technique to train convolutional
neural network models on MNIST and FEMNIST datasets over a simulated FL network. Our results show
that our approach significantly improves privacy guarantee for user dropouts compared to existing DP
algorithms on FL networks.

INDEX TERMS Differential privacy, federated learning, user dropout, noise calibration.

I. INTRODUCTION
Progress in machine learning (ML) is transforming the world
we live in and the way we operate our businesses. We are
experiencing vast adoption of ML at scale to drive change
in the future. Data play an essential role in developing ML,
and frequently, personal user data drive the development of an
ML algorithm. Therefore, service providers attempt to collect
substantial data from a user and utilize it for ML algorithms.
This approach immediately puts the privacy of the users at
risk because service providers can access raw data, which
frequently contain private and sensitive information.

To address these problems, federated learning (FL) has
been proposed to restrict the management of personal user
data while training an ML algorithm for a particular service.
FL networks use devices to collaboratively train a shared
ML model without sharing sensitive data across multiple
computing devices and services. FL is considered as a very

The associate editor coordinating the review of this manuscript and

approving it for publication was Aysegul Ucar .

promising privacy-preserving technology for ML. Several
technology companies, such as Google and Apple, are com-
mercially deploying FL in their products and for promoting
their interest in improving privacy [1]–[5].

In principle, FL improves data privacy; however, there are
still several challenges that need to be addressed to ensure
privacy in an FL network. First, the update vectors of a user
are sensitive because some information of the training data
of the user can be revealed by the update vectors. Second,
the training data of a user can also be inferred from the final
output model of the server in FL. There have been studies
on privacy concerns regarding the above threats, such as
[6]–[8]. Prior studies to protect privacy in FL have outlined
the approaches to 1) securely aggregate local update vectors
against the server [9]–[12] and 2) generate a model with
differential privacy (DP) in FL networks [13]–[17].

In this paper, we focus on developing an enhanced
DP mechanism for FL (DP-FL). For the construction of
DP-FL, two basic requirements have been considered in
the literature. The first requirement is distributed DP-noise

148090
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-3169-1356
https://orcid.org/0000-0003-4789-3347
https://orcid.org/0000-0002-5253-3779

C. Baek et al.: Enhancing Differential Privacy for FL at Scale

generation [9]–[11], [18], [19]. In the standard centralized
setting, the server generates DP noise and adds it to the
trained model to make it differentially private. However,
DP noise addition by the server is not preferred because the
users must trust the server. Distributed DP-noise generation
alleviates the need for each client to trust a central noise
source. The second requirement is user-level privacy [14],
[17]. Typical DP mechanisms guarantee the privacy of each
individual example (example-level privacy). However, a user
in FL contributes a large amount of data and has interest in the
protection of the overall dataset. Therefore, privacy guarantee
needs to be ensured at the user level (user-level privacy).
A key outcome of ensuring user-level privacy guarantee is
the ability to limit an attacker from distinguishing twomodels
with the presence or absence of the entire dataset of the user.

In this paper, we investigate a new privacy risk for FL.
An FL network typically consists of a large number of users
and requires real time communication between the server
and the users over it. Bonawitz et al. [1] have tested their
FL system with a few hundred devices based on the work
of McMahan et al. [20]. They reported dropout rate varies
between 6% and 10% on average due to computation errors,
network failures, or changes in eligibility. Therefore it nec-
essarily happens that some devices in an FL network fail to
complete the training within a given time or train the model,
and frequently leave the network during the training process.

We first observe that user dropouts of an FL network
can severely degrade the level of privacy protection in the
notion of DP. Intuitively, to satisfy DP over a distributed
setting, users add distributed noise sampled from a Gaussian
distribution with a small variance to the update vectors. Thus,
the aggregation of noise vectors is distributed over a Gaussian
distribution with an appropriate variance, which is yielded
by predetermined DP parameters ε and δ. However, if some
users leave the network during aggregation, the aggregated
noise vector follows a Gaussian distribution with a smaller
variance than expected. This decreases the privacy protection
level with respect to DP. Therefore, it is necessary to control
the noise when user dropouts occur FL with a distributed DP
noise mechanism. Our contributions are as follows:
• A new privacy requirement for a DP mechanism over
an FL network is identified, which is referred as
DP-robustness toward user dropouts. To rigorously ana-
lyze the privacy reduction due to user dropouts, we elab-
orate the concept of sensitivity under an FL setting.
Specifically, we observe that the number of users par-
ticipating in an FL network needs to be considered as
one of the parameters. Therefore, it is considered when
defining an adjacent dataset for the sensitivity of func-
tion. We find that the variance of an aggregated noise
vector is reduced by a factor of n′

n when the number of
users decreases from n to n′ due to dropouts, which leads
to over-consumption of the privacy budget.

• We develop a DP-FL method robust to user dropouts
over a distributed setting. We build it on a distributed
version of the DP-FL solution with user-level privacy,

TABLE 1. Comparison of DP-FLs with respect to privacy requirements.

that was proposed by McMahan et al. [17]. Our mech-
anism allows alive users to refresh the noise vectors
so that an aggregate noise vector satisfies the expected
variance against the dropout of a part of the initial
users. Consequently, the proposed mechanism satis-
fies DP-robustness toward user dropouts as well as
distributed noise generation and user-level privacy for
DP-FL. We summarize the propose DP-FL method on
the privacy requirements compared to notable prior
works in Table 1.

• We perform intensive experiments to demonstrate the
proposed DP-FL. We evaluate it for training convolu-
tional neural network (CNN) models on MNIST [21]
and FEMNIST [22] datasets over a simulated FL
network. The evaluation shows that the proposedmecha-
nism improves privacy protection byDP compared to the
existing DP-FL methods without significant accuracy
loss.

The remainder of the paper is organized as follows.
We reviews some related work in Section II. In Section III,
we provide the background on DP, FL, and a threat model on
an FL network. In Section IV, we analyze the sensitivity of
average function for FL and identify a new privacy risk due to
user dropouts from the network. We then present our DP-FL
solution robust to user dropouts in Section V. Section VI
presents our experimental results with two datasets, MNIST
and FEMNIST, to demonstrate the performance and privacy
guarantees of our solution. Finally, this paper concludes with
some remarks in Section VII.

II. RELATED WORKS
Recent studies show that deep neural networks (DNNs) can
memorize the training dataset for CNNs [8] and recurrent
neural networks (RNNs) [6]. Carlini et al. [6] presented the
testing methodology for detecting memorization, and showed
that DP is effective in preventing it. Shokri and Shmatikov [7]
presented membership inference attacks to infer whether a
record is in the model training dataset.

DP is a well-known tool for addressing privacy prob-
lems because it offers provable privacy guarantee [23]–[25].
It ensures that the output of the algorithm does not signifi-
cantly depend on any particular data of the user. Differentially
private learning has been studied extensively to ensure the
privacy of output models. DP solutions for convex problems
have been reported [26]–[28].

For DNNs in the centralized setting, Abadi et al. [29]
first presented differentially private SGD with example-level

VOLUME 9, 2021 148091

C. Baek et al.: Enhancing Differential Privacy for FL at Scale

privacy. They proposed the moment accountant method to
tightly track the overall use of privacy budget via the ran-
dom sampling process. Yu et al. [30] proposed a differen-
tially private DNNs based on the notion of concentrated
differential privacy (CDP). They also suggested a dynamic
privacy budget allocation to adjust the privacy budget for
every training iteration and empirically demonstrated that the
technique achieves better model accuracy while retaining the
same privacy guarantee. In addition, Papernot et al. [31] and
Wu et al. [32] proposed differential private machine learn-
ing with tighter DP guarantee. They suggested a new noisy
aggregation mechanism with selective noise and provided a
new analysis of sensitivity, to obtain better model accuracy
under the same privacy guarantees.

Several studies have conducted on DP-FL. Earlier works
in the literature include [13], [14]. Shokri et al. [13] first
proposed a DP mechanism for the distributed setting. In their
architecture, participants selectively share the trained model
parameters using a Laplace mechanism. Geyer et al. [14] and
McMahan et al. [17] studied user-level privacy for FL and
proposed DP-FL mechanisms supporting it based on [29].
Agarwal et al. [15] presented a communication efficient
method for DP-FL. Their work considered distributed noise
generation, however, assumed that the server is not curious
about an individual update vector. Thakkar et al. [16] pro-
posed the use of an adaptive clipping norm method when
determining a clipping threshold with user-level privacy in
DP-FL. Wei et al. [33] presented a DP-FL mechanism,
which applies a Gaussian mechanism on the user side to
provide example-level DP for each update vector. Since it
does not consider distributed DP-noise generation, it nec-
essarily require a huge privacy budget overall (for instance,
from 50 to 100). Huang et al. [34] presented a DPmechanism
with example-level privacy focusing on the unbalanced data
scenario in FL. Their solution adaptively allocates the noise
during each iteration of SGD to improve accuracy of a trained
model. Zheng et al. [35] recently proposed a DP-FL mech-
anism satisfying example-level privacy. Their mechanism is
based on GDP (Gaussian differential privacy) [36] that is
motivated by the hypothesis testing interpretation of DP.
We note that above prior works assume that the server is a
trusted third party in the sense that individual update vectors
are clearly aggregated by the server.

There have been several studies to apply local DP (LDP)
to FL [37], [38]. Bhowmick et al. [37] introduced limited
version of LDP to ensure stronger privacy. It limits the ability
of potential adversaries and achieves better model accuracy
than the original version of LDP. Li et al. [38] recently pro-
posed a LDP algorithm for gradient-based parameter transfer
in the context of meta-learning, which can be applied to
FL with personalization, while retaining provable transfer
learning guarantee in convex settings. However, despite these
attempts, algorithms using LDP still have lower model accu-
racy compared to global DP algorithms. Therefore, instead
of using LDP, we applied global DP using distributed noise

generation and secure multiparty computation (SMC) to pro-
vide both model accuracy and high privacy.

Concurrently, cryptographic methods have been suggested
for data confidentiality for machine learning. They focus
on the methods for performing learning or inference on
encrypted data by homomorphic encryption [39]–[41] or
SMC [42]–[45].

There are several works in the literature to provide data
confidentiality for users for FL. Bonawitz et al. [9] pro-
posed a secure aggregation method for privacy preserving
FL. Truex et al. [10] and Xu et al. [11] proposed solu-
tions to provide both data confidentiality during computation
and DP with example-level privacy. Both works generate
DP-noise in a distributed way to reduce noise size while
maintaining the same DP guarantee and securely aggregate
update vectors using homomorphic encryption and functional
encryption [12], respectively. Mugunthan et al. [18] designed
an FL simulator. It supports distributed noise generation for
DP and secure aggregation from SMC. However it only
considers a Laplace mechanism, which is not applicable
to DNNs. Wang et al. [19] proposed a DP-FL mechanism
which supports distributed noise generation for DP and secure
aggregation from SMC. Their work adds discrete Gaussian
noise into client updates, which leads to communication effi-
ciency in FL over the previous work by Agarwal et al. [15].
We remark that these prior works for DP-FL with secure
aggregation do not consider privacy degradation of DP when
users drop out. They only guarantee the correctness of aggre-
gation in the case.

III. PRELIMINARIES
A. DIFFERENTIAL PRIVACY
DP is the concept about privacy guarantees of an individ-
ual data for algorithms on aggregate databases. Informally,
an algorithm is said to be differentially private if the inclusion
of a single individual record in the dataset does not give a sta-
tistically significant effect on the output of the algorithm. The
formal definition of DP was introduced by Dwork et al. [24].
Definition 1 (Differential Privacy (DP)): A randomized

mechanism M : D 7→ R is (ε, δ)-differentially private (DP)
if for any adjacent D,D′ ∈ D and S ⊂ R it holds that

Pr[M (D) ∈ S] ≤ eε Pr[M (D′) ∈ S]+ δ.

When δ = 0, we say that a mechanism is ε-differentially
private. Here, ε is a privacy parameter called the privacy
budget that determines the strength of privacy protection.

In the above definition, the meaning of adjacent depends
on the algorithms or applications. In ML, it is usually used
in two meanings depending on the model of privacy pro-
vided, i.e., example-level privacy and user-level privacy.
In example-level privacy which is provided by most prior
works [10], [29], [32], [46] on differentially private ML, two
datasets D and D′ are adjacent if D′ is formed by adding
or removing a single training example from D. User-level
privacy [17] focuses on protection of whole user data on the

148092 VOLUME 9, 2021

C. Baek et al.: Enhancing Differential Privacy for FL at Scale

training set. In user-level privacy, two datasets D and D′ are
adjacent if D′ is formed by adding or removing all of the
examples associated with a single user from D.
The standard approach to achieve DP is adding noise

whose size is proportional to the sensitivity of the output. The
sensitivity measures the maximum of the output difference
between two adjacent datasets. We denote the sensitivity of f
by senf . We use the Gaussian mechanism to achieve DP for
our construction for DP-FL in Section V.
Definition 2 (Gaussian Mechanism): Let f : D → Rd be

a d-dimensional function of `2-sensitivity senf . Define the
Gaussian mechanism with parameter σ for f as

M (D) = f (D)+N (0, sen2f σ
2I),

i.e., the mechanism adds noise scaled toN (0, sen2f σ
2) to each

of the d components of the output.
The following theorem is the well-known result related

to (ε, δ)-DP using a single application of the Gaussian
mechanism.
Theorem 1 [25]: If ε ∈ (0, 1) and σ 2

≥ 2 log 1.25
δ
/ε2,

the Gaussian mechanism with noise parameter senf σ for a
function f satisfies (ε, δ)-DP.

When a mechanism is performed multiple times, the evalu-
ation of the privacy budget follows the composition theorem.
In this paper, we use the moment accountant proposed in [29]
to evaluate the privacy budget used in our algorithm.

B. DNN
A DNN is a type of artificial neural networks to define
a function parameterized by a model parameters. A DNN
has a multi-layered structure defined by the synthesis of
fully-connected operations specified as affine transforma-
tions and nonlinear activation functions such as sigmoids and
ReLUs. In the typical training process, a set of input and
output examples is fed to the DNN to adjust a model so that
the loss function L on a given model becomes less than a
target loss over an input set of data points. For the train of a
model, traditional DNNs employ the centralized setting, i.e.,
a server collects a large amount of data and trains a model
from the collected data. For details of various techniques of
DNNs, we refer to [47].

CNNs are one of major classes of DNNs to solve computer
vision tasks, i.e., recognition and classification of the image.
A CNN is configured to perform a classification operation on
the filtered image after applying a filtering technique to the
original image by adding a new layer called a convolutional
layer and a pooling layer before the fully-connected layer.
The convolution layer applies a filtering technique to the
image and the pooling layer performs various functions such
as reducing the size of the image by converting local parts
of the image into one representative scalar value. We demon-
strate our DP-FL mechanism over a CNN in Section VI.

C. FEDERATED LEARNING
FL is a machine learning technique that uses multiple local
devices to train a shared model without sharing their own

Algorithm 1: Local Update

1 Parameters:
2 B,E, η,C
3 Clip(1):
4 return min(1, C

‖1‖
) ·1

5 Local Update(user i, initial model θ):
6 w← θ

7 for each local epoch i = 1 to E do
8 B← {split i’s data into batches of size B}
9 for batch b ∈ B do

10 w← w− η∇L(w; b)
11 w← θ + Clip(w− θ)

12 return w− θ

data. In centralized ML, service providers collect data from
users and train a model upon it. Thus, the centralizes setting
results in privacy risk for the data of the user. However, in FL,
because each device (user) does not send raw data to the
central server, FL can prevent the risk caused by the service
providers’ access to raw data. For this reason, many IT com-
panies consider FL as a core technology for privacy-sensitive
commercial services and make a lot of effort to study and
develop it.

In this paper, we focus on federated averaging [20] as an
algorithm to perform FL. Federated averaging is a method of
training the global model by taking the average of the update
vectors obtained from local update performed by each user.
In local update, the user splits her own data into the size
of batch and repeatedly performs gradient descent for each
batch. Gradient descent is a method that computes the gradi-
ent of the loss functionL and updates the parameters until the
loss function converges to local minimum. We add clipping
step after gradient descent for privacy guarantees, as usual
ML algorithms that include privacy protection. Briefly, the
local update is performed as described in Algorithm 1.

D. THREAT MODEL
We consider the following threat model. It includes the
assumption for behavior of each participant in DP-FL
and SMC.
• Server: We assume that the server is honest-but-curious,
which is a common assumption [9]–[11]. That is, the
server follows the protocol correctly, but may try to learn
some information about the data of users. The server
can also use any information to improve performance of
learning.

• User: We assume that users can collude to learn private
information of others. The users alsomay try to learn any
private information from the final outputs. In addition,
they want their private data to be kept at the level of
privacy protection promised by the coordinator system.

• Trusted third party (TTP): We do not need TTP for DP
mechanism by utilizing SMCwithout TTP. For instance,

VOLUME 9, 2021 148093

C. Baek et al.: Enhancing Differential Privacy for FL at Scale

in [9], TTP is not required for honest-but-curious
adversaries.

IV. PRIVACY RISK DUE TO USER DROPOUTS IN FL
A. ANALYSIS OF SENSITIVITY FOR FEDERATED AVERAGE
The sensitivity of a function is the maximum output dif-
ference between any two adjacent datasets. In this section,
we revisit the concept of sensitivity and elaborate it under an
FL setting. We start with the formal definition of sensitivity.
In this paper, sensitivity is the `2-sensitivity.
Definition 3 (Sensitivity): Let f : D → Rd be a

d-dimensional function. The sensitivity of f is defined as

senf = max
D,D′∈D

‖f (D)− f (D′)‖2

where D and D′ differ in only a single entry.
The definition of sensitivity is the maximum effect of one

entry on the output of the function, for all the datasets in D.
In the definition, D depends on the application of interest.
For instance, when f is a summation, the effect of an entry
x of a dataset D is |x| for any dataset D. However, in the
case of average function f , the effect of an entry x of a
datasetD depends on the number of entries inD. For example,
if |D| = 10, the effect of x is |x|10 , and if |D| = 104, the effect
of x is bounded by |x|

104
. Therefore, in the case of average, it is

required to specify the size of D used in the application.
We are interested in rigorously describing D in an FL

setting. We focus on federated average of the elements in
D, where the coordinator system specifies the size of D in
advance and makes it public. More precisely, in federated
averaging, each device sends a local update vector obtained
by training its own data to the server. The server subse-
quently computes the (weighted) average of the update vec-
tors received from the devices. In the process, DP noise is
added to the output to provide privacy protection, and the
server notifies the number of devices participating in the
learning for the distributedDP-noise generation.We note here
that the number of devices is determined and made public in
advance. Therefore, the sensitivity should be computed only
for the set of devices satisfying the condition for the number
of devices.

We analyze the sensitivity of an average function in an FL
setting, denoted as favg(n). The function computes the average
of n update vectors, where number n is a predetermined
parameter. In this case, D consists of sets D of n vectors. As
adjacent datasets for D, we may only consider the datasets in
which one entry is replaced by another, and not the datasets
that add or subtract one entry from D. The following propo-
sition shows the sensitivity of favg(n).
Proposition 1: Let favg(n) : D → Rd be a d-dimensional

function such that D consists of sets D of n d-dimensional
vectors and |x| ≤ C holds for all x ∈ D and some constant C.
Thus, the sensitivity of favg(n) is bounded by 2C

n .
Proof: As adjacent datasets for a given dataset, we only

consider the datasets inwhich one entry is replaced to another.
This is due to constraint on the number of vectors. For any

setD = {x1, x2, · · · , xn} of n d-dimensional vectors, we con-
sider an adjacent set D′ = (D \ {xn}) ∪ {x ′} where x ′ /∈ D,
without loss of generality.

Then We have

‖f (D′)− f (D)‖2 =

∥∥∥∥∥1n
(
n−1∑
i=1

xi + x ′
)
−

1
n

n∑
i=1

xi

∥∥∥∥∥
2

=
‖x ′ − xn‖2

n

≤
2C
n

Note that the last inequality is from the triangle inequality.
This shows that the sensitivity of favg(n) is bounded by 2C

n .

From the above result, we remark that calculating the sensi-
tivity of the average function in consideration of the condition
for the number of update vectors gives a significant difference
to the bounds of the sensitivity. Suppose D has no condition
for the number of vectors. One needs to compute that the
sensitivity of the average function over D is 2C

n0
where n0

is the smallest number of vectors in the dataset belonging
toD. Then the bound of the sensitivity is a constant regardless
of the number of users actually participating in FL. This is
because the sensitivity is computed over all the domain D.
However, by taking account for the number of update vectors,
a tighter bound can be applied to the sensitivity, which leads
to more precise computation of the privacy budget.

One can easily extend the above result to theweighted aver-
age function fwavg(n). fwavg(n) computes the weighted average
of the vectors in D, where the weighted sum of the vectors
is equal to n. fwavg(n) can be used for federated averaging
using the weighted data, which is useful when the number
or importance of the data that each user trains for learning is
different. There is a similar bound on the sensitivity of favg(n)
in average case.
Proposition 2: For a d-dimensional vector x, w(x) denotes

the weight corresponding to x, where |x| ≤ C and w(x) ≤ W
for some constants C and W. Suppose D ∈ D is a set that
consists of d-dimensional vectors such that

∑
xi∈D w(xi) = n

for a given number n. Let fwavg(n) : D→ Rd be the weighted
average function defined as

f (D) =

∑
xi∈D w(xi)xi∑
xi∈D w(xi)

.

Thus, the sensitivity of fwavg(n) is bounded by 2WC
n .

Proof: Similar to Proposition 1, the dataset has con-
straints on the sum of weights. As adjacent datasets, we only
consider the datasets in which one entry is replaced to another
entry with the same weight. Let D be a set of d-dimensional
vectors such that

∑
xi∈D w(xi) = n for a given number n.

Then, we consider an adjacent set D′ = (D \ {xk}) ∪ {x ′}
where xk ∈ D, x ′ /∈ D and w(xk) = w(x ′), without loss of
generality.

148094 VOLUME 9, 2021

C. Baek et al.: Enhancing Differential Privacy for FL at Scale

TABLE 2. Privacy for different dropout rate. For each row, 50 out of 5,000 users are sampled initially, and some users are dropped out with each dropout
rate during the local update process. We set δ = 10−5 and compute ε for which (ε, δ)-DP holds after several rounds. We also compute the maximum
number of rounds without exceeding several privacy budget.

Then We have

‖f (D′)− f (D)‖2 =

∥∥∥∥∥∥1n
∑
xi∈D′

w(xi)xi −
1
n

∑
xi∈D

w(xi)xi

∥∥∥∥∥∥
2

=
‖w(x ′)x ′ − w(xk)xk‖2

n

≤
2WC
n

Note that the last inequality is from the triangle inequal-
ity. This shows that the sensitivity of fwavg(n) is bounded
by 2WC

n .

B. PRIVACY DEGRADATION CAUSED BY CHANGE IN
SENSITIVITY IN FL
In FL, user dropouts can occur frequently owing to the unre-
liable network conditions or the device status. User dropouts
change the number of users participating in the federated
averaging. This can change the effect that the data of one
user has on the final output of the federated averaging,
thereby leading to overspending the privacy budget. There-
fore, we apply the concept of favg(n) or fwavg(n) with respect to
the corresponding dropout conditions, for providing a tight
privacy budget. For the case in which the data of the user
are not weighted explicitly, we assume that all data has the
same weight. Specifically, all weights are assumed to be 1 as
in [17]. Therefore, we only deal with fwavg(n) in the remainder
of the section.

Suppose that each user i in user set U has his/her own
update vector 1i with associated weight wi. We let function
f be the weighted average of the update vectors of the user,
as in Proposition 2. Suppose n is the weight sum of the users
participating in the FL and that the size of the update vector
of each user is bounded by some constantC from the clipping
process. Wemay assume that the weight of each user does not
exceed 1, without loss of generality. Here, the weight sum, n,
is notified to all the users participating in the FL so that each
user can generate a distributed noise. Therefore, it can be a
fixed condition when estimating the bound of the sensitivity.
Furthermore, by Proposition 2, the sensitivity with respect to
the condition on weight sum fwavg(n) is bounded by 2C

n .
In central DP setting, the server adds the Gaussian noise

sampled from N (0, σ 2I), where σ = 2C
n · z, with some

noise multiplier z. However, because FL is a distributed
network, it is preferred that the users perform this without
trusting the server. Specifically, each user samples his/her

own noise independently so that their weighted average
draws N (0, σ 2I). A noise vector can be simply sampled
from N (0, σ 2I) in a distributed manner because the sum
of the independent normal random variables is also dis-
tributed normally. More precisely, each user i samples ei from
N (0, nwiσ 2I) and generates a noise update vector wi1i+ ei.
Since nσ 2∑wi = n2σ 2, the noise part of the weighted
average draws N (0, σ 2I).

Now, suppose some users drop out, and n′(< n) is the
weight sum of the alive users. Here, the changed weight sum,
n′, is also notified to the alive users, and it can be considered
that the condition on the weight sum is changed. Hence,
we should compute the sensitivity of fwavg(n′), and not of
fwavg(n). Therefore, it is bounded by 2C

n′ .
In this case, to maintain the same level of privacy as

before user dropouts occur, the noise distribution of the final
output should be N (0, σ ′2I), where σ ′ = 2Cz

n′ . However,
the weighted average of the eis of the alive users draws
N (0, n

′

n σ
′2I), which is obtained from

1
n′2

∑
alive users

nwiσ 2
=

n
n′
σ 2
=
n′

n
σ ′2.

The reduction in the noise variance by a factor of n
′

n causes
over-consumption of the privacy budget at each round of
the entire FL work. Thus, unless the number of rounds is
cut, it fails to achieve the expected privacy protection by
DP. Table 2 summarizes the change in ε and the maximum
number of rounds that a user can participate in learning in a
fixed privacy budget based on the user dropout rate.

It is worth noting that the variance of the noise of the final
output is n

n′ σ
2, which is larger than σ 2 of the case of no user

dropout. Therefore, if we do not consider the change in the
sensitivity, it can be misleading that the mechanism already
provides sufficient privacy protection. However, by consider-
ing the change in the sensitivity due to user dropouts, it can
be seen that the size of the noise is insufficient to achieve
the expected privacy protection. Thus, it is essential to esti-
mate the sensitivity considering the condition of the weight
sum.

V. DP MECHANISM ROBUST TO USER DROPOUT
In this section, we present our DP-FL mechanism, which is
DP-robust to user dropouts. We first give a brief description
of the algorithm and then provide a privacy analysis of our
algorithm.

VOLUME 9, 2021 148095

C. Baek et al.: Enhancing Differential Privacy for FL at Scale

A. ALGORITHM DESCRIPTION
Our approach is built on the differentially private federated
averaging suggested by McMahan et al. [17]. Their method
allows user-level privacy by applying the DP mechanism to
the update vectors, and not directly on the training exam-
ples of the users. However, their solution assumes that the
server generates a differentially private model following the
collection of all the update vectors from the users. Thus,
we aim to provide 1) a distributed DP-noise generation
method from users and 2) robustness to user dropouts over
their construction.

Our construction is presented in Algorithm 2. Similar to the
construction of McMahan et al., ours considers the weighted
average of the update vectors obtained from a sampled user
set. Each user i in user set U has his/her own dataset with
associated weight wi. The weight quantifies the degree of
effect of the data of the user on the overall learning. We set
it to be proportional to ni, the number of data the user has,
and set its maximum as 1. Specifically, we define the weight
of user i as wi = min{ ni

nmax
, 1}, where nmax is the limit

number of the data used for the training per user. The server
coordinates FL to train the model with the users, who are
typically sampled by the server from all the candidate users
with probability q. This sampling process is important for the
use of the moment accountant [29], which provides a tight
bound of the privacy loss. The server shares the common
initial model and the hyper-parameters for training. All the
sampled users are provided the common initial model, θ0,
and the public hyper-parameters: number of epochs E , batch
size B, learning rate η, and clipping bound C . The distributed
DP-noise generation is described from Line 13 to Line 16 in
the algorithm. Let U t be the set of sampled users for the
round t . At Line 15, each user i ∈ U t independently samples
the ei from N (0, nwiσ 2I). The user subsequently computes
a noise local update vector Mi := wi1i + ei, where 1i is a
plain update vector.

Even though each update vectorwi1i is noised with ei, this
does not guarantee the confidentiality of wi1i, which cannot
be provided by DP. It should be noted that the server is only
interested in the average of noised update vectorsMi. Hence,
instead of sending a plain Mi to the server, our algorithm
performs SMC at Line 16. SMC allows the computation of the
weighted average of the update vectors of the users without
revealing any information about individual update vectors.
In particular, the functionality of our interest is the secure
aggregation or averaging of the input vectors of the users
supporting user dropouts. Any SMCwith these properties can
be employed in our construction, and we have adopted SMC
in [9] proposed by Bonawitz et al.
Finally, we perform the noise calibration process to refresh

an aggregated noise vector when the weight sum of the
users decreases from n to n′ due to the user dropouts during
Round t . This process is given from Line 17 to Line 24 in the
algorithm. Each user i knows his/her noise vector ei generated
at initially (Line 15). Hence, each user can sample new noise

Algorithm 2: DP-FL Robust to User Dropouts

1 Parameters:
2 noise multiplier z
3 user example limit nmax
4 clipping bound C
5 user sampling probability q

6 Main Algorithm:
7 Initial model θ0, user set U
8 For each i ∈ U , i has ni examples and

wi = min{ ni
nmax

, 1}
9 for each round t = 0, 1, 2, . . . do

10 Server:
11 U t

← sample user set with probability q
12 Broadcast to U t

: n←
∑

i∈U t wi, σ ← 2C
n z

13 User: each user i ∈ U t do
14 1t+1

i ← UserUpdate(i, θ t)
15 et+1i ← N (0, nwiσ 2I)
16 Send Mi← wi1

t+1
i + et+1i (via SMC)

17 Server:
18 U t

A← {alive users ∈ U
t
}

19 Get 1t+1 using SMC on {Mi | i ∈ U t
A}

20 Broadcast to U t
A : n

′
←
∑

i∈U t
A
wi,

σ ′← 2C
n′ z

21 User: each user i ∈ U t
A do

22 Send e′t+1i ←−et+1i +N (0, n′wiσ ′2I)

23 Server:
24 Share θ t+1← θ t +1t+1

+
1
n′
∑

i∈U t
A
e′t+1i

vector e′i from

N (−ei,
n2

n′
wiσ 2I) = −ei +N (0, n′wiσ ′2I),

where σ = 2Cz
n and σ ′ = 2Cz

n′ , respectively. Subsequently,
each user sends it to the server, and the server applies it
on the final output (Line 24). The noise calibration process
aims to change the noise distribution of the final output from
N (0, σ 2I) to N (0, σ ′2I).

B. PRIVACY ANALYSIS
Because we add Mi’s using SMC, it is trivial that the server
cannot access the value of each Mi. Thus, in this subsection,
we focus on the DP analysis for the final output. We use
the moment accountant as a privacy accountant method.
Moment accountant additively accumulates the log values
of the moments of the privacy loss at each round and uses
this to compute the privacy budget of the entire algorithm.
Therefore, in order for the algorithm to maintain the privacy
level as desired, it is necessary to ensure that the privacy loss
of each round does not become larger. However, if some users

148096 VOLUME 9, 2021

C. Baek et al.: Enhancing Differential Privacy for FL at Scale

drop out at a round and the weight sum of the alive users
decreases from n to n′, the weighted average of the eis of
the alive users drawsN (0, n

′

n σ
′2I) as in the previous section.

For the desired privacy level, the weighted average of the DP
noise of the alive users should drawN (0, σ ′2I), which means
the privacy loss at this round becomes larger than expected.

The noise calibration process plays a role in reducing such
increased privacy loss. At Line 24, we have

1t+1
+

1
n′
∑
i∈U t

A

e′t+1i = M̄i +
1
n′
∑
i∈U t

A

(et+1i + e′t+1i)

where M̄i is the weighted average of the update vectors
of the alive users. Since e′t+1i is sampled from −et+1i +

N (0, n′wiσ ′2I), the final output1t+1
+

1
n′
∑

i∈U t
A
e′t+1i draws

M̄i +N (0, σ ′2I).
Because the server is assumed to be honest-but-curious,

it can access not only final model parameters but also inter-
mediate model parameters during an algorithm execution.
Note that intermediate model parameters do not reflect the
noise calibration process, hence, suffer from weaker privacy
for user data. Therefore it is necessary that intermediate
parameters are unavailable to the server. One approach to
force the server to add noise is that each user first adds a
noise vector with a large variance to the update vector and
subsequently reduces it by a noise calibration process as
follows. Let n0 be the minimum weight sum of the users such
that FL works, i.e., n, n′ ≥ n0.1 Given n0, each user i samples
ei from N (0, n0wiσ 2

0 I) instead of N (0, n wiσ 2I) at Line 15,
where σ0 = 2C

n0
z. Subsequently, the user selects e′i from

−ei + N (0, n′wiσ ′2I) at Line 22. Since n0wiσ 2
0 ≥ n′wiσ ′2,

adding ei + e′i is more advantageous than adding ei to the
server in terms of accuracy. We provide the full description
of the algorithm applying this approach in the appendix.

In practice, user dropouts may occur even during the noise
calibration process. We remark that our algorithm addresses
the cases of no dropout in the noise calibration process or
few dropouts with an acceptable level of privacy degradation.
However, one can observe that the computation and commu-
nication costs required in the noise calibration process (from
Line 21 to Line 22) are quite low than those in the local
update process (from Line 10 to Line 20). Thus, because
users who survived in the local update process are alive in
the subsequent process with high probability, we expect that
our algorithm properly works in practice.

VI. EXPERIMENTS
In this section, we access our algorithm to train CNN in a
distributed environment. We implement our algorithm using
TensorFlow and TensorFlow Privacy. The model built in
TensorFlow Privacy [48] is referred as our CNN model.
It comprises two convolution layers activated by ReLU, two

1It is reasonable to assume the minimum weight sum of the users because
an FL work might require a certain number of participants so that the model
learns various datasets.

FIGURE 1. Effect of DP noise on MNIST. Figure shows accuracy and the
privacy budgets, ε, for (ε, δ)-DP with δ = 10−5 for 1–100 rounds when
noise multiplier z values are 0.5, 1.0, 1.5, and 2.0.

max pooling layers, and two dense layers. We slightly modi-
fied the model to prevent overfitting and improve the training
speed by inserting a dropout layer between the last two dense
layers in [48]. In addition, we adopt the secure aggregation
protocol of Bonawitz et al. [9] to perform secure averaging.
To track the overall use of the privacy budget, we use

the moment accountant in [29], which yields a very tight
privacy bound. The moment accountant is computed using
the RDP accountant available with TensorFlow Privacy [49].
In addition, we selected 50 users from a total of 5,000 to
participate in the learning at a sampling rate of 0.01. To
present effects of different scenarios on the experimental
result, we vary the noise multiplier, the dropout rate, and
other hyper-parameters. In the experiments, the dropout rate
is the proportion that drives a user to dropout from a local
learning process, and it is used for dropout scenario analysis.
We consider two dropout rates, 10% and 30%.

The experiments are conducted on two different
datasets: MNIST [21] and Federated Extended MNIST
(FEMNIST) [22]. The former is used for an independent and
identically distributed (i.i.d.) case, whereas the latter is for a
non-i.i.d. one.

A. MNIST: i.i.d CASE
The MNIST database is a well-known dataset for image
classification. It is a 28 × 28 image dataset of handwritten

VOLUME 9, 2021 148097

C. Baek et al.: Enhancing Differential Privacy for FL at Scale

FIGURE 2. Effects of user dropout and noise calibration on MNIST database when z = 1 and z = 1.5. Figure shows accuracy and accounted privacy
budgets ε for 1–100 rounds. Table summarizes results after 100 rounds of training.

digits, containing 60,000 and 10,000 training and test exam-
ples, respectively. It is not classified based on writers, and
hence, in this study, it is randomly distributed to the users
and employed for the experiments for the i.i.d case. The
maximum number of examples per user is set as nmax =
1, 200. For simplicity, the number of training examples for a
user is set as 1, 200. Specifically, wi = 1 is set for each user i.
In the experiments, the following hyper-parameter settings
are used: B = 100, E = 1, and η = 0.15, where B is the batch
size, E is the number of the epochs, and η is the learning rate.

1) EFFECT OF DP NOISE
To examine the effect of DP noise on FL, we evaluate the
privacy budget and the accuracy of the model for different
noise multiplier z values. The weight sum, n, and the clipping
bound for the limitation of the sensitivity are set as 50 and
0.5, respectively. To obtain only the effect of DP noise, a case
in which there is no user dropout is considered.

Fig. 1 shows the accuracy and ε for (ε, δ)-DP with δ =
10−5. Experiments are conducted using various noise mul-
tiplier z values, i.e., 0.5, 1.0, 1.5, and 2.0. When z =
0.5, 1.0, 1.5, and 2.0, the image classification accuracies
in 100 rounds are 0.9406, 0.9289, 0.9013, and 0.8218, respec-
tively, and the privacy budgets (ε) are 9.1418, 1.6118, 0.6731,
and 0.4437, respectively. Considering the accuracy in the
non-DP case, i.e., 0.9615, as a baseline, z value of 1.5 or less
yields a good result without significant accuracy loss. Specif-
ically, there is an appropriate noise size that does not cause
a large accuracy loss when applying DP. These results show
that FL using our algorithms is effective and can achieve high
accuracy without significant loss by appropriately setting the
noise parameters.

2) EFFECT OF USER DROPOUTS
We evaluate the privacy budget and the accuracy of the model
to examine the effects of both user dropout and noise calibra-
tion. To this end, in the experiments, we only changed the
dropout rates and the noise calibration status while maintain-
ing all other parameters fixed. In addition, we set z as 1.0
and 1.5, which are determined to be appropriate from the
results of the previous experiments. To adjust the dropout rate,
only the predetermined rates of the users, who participated
in the learning in the aggregation phase, were considered
to be dropped out in the order in which the data are sent,
and the users who subsequently transmitted the data. Note
that the decision of a user to drop out is not random but
related to the communication environment of the user, device
status, and other factors. Therefore, it is not reflected it in
the sampling rate of the moment accountant. Fig. 2 shows the
accuracy and ε for (ε, δ)-DP with δ = 10−5. Based on the
analysis of the experimental results, we obtain the following
results.
• The image classification accuracy decreases when user
dropouts occur regardless of the noise calibration.
In addition, the accuracy decreases as the dropout rate
increases. Indeed, when user dropout occurs, hence, the
weight sum decreases from n to n′, the standard devia-
tions of the noise of the final output with and without
noise calibration are n

n′ σ and
√

n
n′ σ , respectively. These

two standard deviations are larger than σ when there is
no user dropout.

• If the noise calibration step is introduced in the algo-
rithm, in most cases, the target privacy level is achieved
with only a small accuracy loss. For instance, when z =
1.0 and the dropout rates are 10% and 30%, the privacy

148098 VOLUME 9, 2021

C. Baek et al.: Enhancing Differential Privacy for FL at Scale

FIGURE 3. Effect of parameters on MNIST. Figure shows accuracy when one parameter varies, whereas the others are fixed.

budgets, ε, reach 1.8719 and 2.5005, respectively. With
noise calibration, these are decreased to 1.6118, which
is the target ε when FL is established. However, the
accuracy loss is less than 0.02. In our experiments, the
only case in which a large accuracy loss occurs with
noise calibration step is when the dropout rate is 30%
and z = 1.5. The accuracy loss is mainly attributed to the
noise applied to the final output and occurs significantly
when the noise exceeds a certain level. As shown in
Fig. 1, we observed that the accuracy loss is large when
the noise applied to the final output is z

n ≥
2.0
n , if there is

no user dropout. In case of user dropout, the weight sum
decreases from n to n′, and the standard deviation of the
noise applied to the final output is proportional to z

n′ .
When z = 1.5 and the dropout rate is 30%, z

n′ =
1.5
0.7n is

larger than 2.0
n , corresponding to the above case in which

a large accuracy loss occurs.

3) EFFECTS OF OTHER PARAMETERS
We also examined the effects of changes in other parameters
related to privacy guarantee such as the number of users and
clipping bounds. Fig. 3 shows the corresponding experimen-
tal results. Below we summarize our observations.

• The number of users: To evaluate the effect of number
of users, the experimental results obtained with 50 and
35 users were compared. When DP is not applied, the
accuracies of the models trained by 35 and 50 users are
quite similar. This is because of using the average of the
update vectors from the sampled users at each round, and
the average of the vectors from 35 users is similar to that
from 50 users. However, when some DP noise is added,
there is a difference between the accuracies achieved
with 35 and 50 users after some training rounds. For
each round, although the sizes of the averaged update
vectors from 35 and 50 users are very similar, the size
of the averaged noise vectors from 35 users is larger
than that from 50 users by 50

35 times. Consequently, when
DP is applied, the accuracy decreases if the number of
users is reduced. Therefore, increasing the number of

FIGURE 4. Effect of DP Noise on FEMNIST. Figure shows accuracy and
privacy budgets ε for (ε, δ)-DP with δ = 10−5 for 1–200 rounds for noise
multiplier z values of 1.0 and 1.5.

users participating during learning can be adopted as an
approach to increase the accuracy while maintaining the
same DP level.

• Clipping bounds: The clipping bound, C , is varied in
two approaches. First, z and the dropout rate are fixed,
and C is slightly changed. Because the number of users
is fixed, the sensitivity, 2C

n , is dependent only on C .
Thus, the size of the noise vector is proportional to C .
Consequently, the experimental results show that the
image classification accuracy decreases as C increases.

VOLUME 9, 2021 148099

C. Baek et al.: Enhancing Differential Privacy for FL at Scale

FIGURE 5. Effects of user dropout and noise calibration on FEMNIST database when z = 1. Figure shows accuracy and accounted privacy
budgets ε for 1–100 rounds. Table lists results after 100 rounds of training.

We also conducted experiments with various values ofC
while fixing σ instead of z.When σ is fixed, the accuracy
does not change with the size of the noise. However,
a larger update vector 1i is obtained by increasing its
clipping boundC , which implies that the size ratio of the
update vector,1i, and its noise vector, ei, increases as C
increases. Thus, by setting a highC , high image classifi-
cation accuracy can be achieved. However, to increaseC
to enhance the accuracy, z should be decreased because
σ = 2C

n z, which increases the privacy budget. There-
fore, if the server desires to use a fixed value of σ , it is
essential to find the optimal combination of these two
parameters.

B. FEMNIST: NON-i.i.d CASE
In this section, we present the evaluation of our mecha-
nism for the non i.i.d case using FEMNIST database [22].
FEMNIST is a dataset for image classification and is built
by classifying the data in the Extended MNIST database
based on writers. We use the modified version provided by
Google [50]. It contains 341,873 and 40,832 training and test
examples, respectively. Examples in FEMNIST are already
grouped by writers. The number of examples each user has
varies, and hence, the weight of each user is also set dif-
ferently. Thus, for the experiments, we only change some
parameters along with the structure of FEMNIST as follows:
nmax = 120, and the weight of each user i by wi ≤ 1
accordingly. We also set B = 16, E = 10, and η = 0.15.
First, the privacy budget and the accuracy of the model are

evaluated by varying the noise multiplier z to examine the
effect of DP noise on FL. The number of users that participate
in learning is set as 50, whereas the weight sum n is not fixed
because the weightwi differs with the user. In the experiments
for evaluating the effect of only DP noise, as for MNIST,
a case in which there is no user dropout is considered.

Fig. 4 shows the accuracy and ε for (ε, δ)-DP with
δ = 10−5. When z = 1.0 and z = 1.5, the accuracies of
image classification in 200 rounds are 0.8205 and 0.5217,
and the privacy budgets ε are 1.7456 and 0.7421, respectively.
The accuracy for the non-DP case considered as a baseline
is 0.9707. Therefore, relatively the accuracy loss due to DP
noise is much larger than that in the case of MNIST. This is

attributed to the difference in the data distributions of i.i.d and
non-i.i.d datasets. In general, non-i.i.d data are biased, and
therefore, the update vector obtained from training on them
has lower quality than that from training on i.i.d data [51].
Thus, even for the same size of the noise vector, the resultant
accuracy degradation with non-i.i.d data is more than that
with i.i.d data. Therefore, to achieve high accuracy, the noise
vector size should be reduced. Reducing the noise vector
size while maintaining the privacy protection level can be
achieved by increasing n. This is in the same context of
increasing the accuracy when the model is trained using non-
i.i.d data without applying DP.

We also evaluate the privacy budget and the accuracy of the
model to examine the effects of the user dropout and the noise
calibration. To this end, only the dropout rates and the noise
calibration size are varied while keeping the other parameters
fixed. Fig. 5 presents the accuracy and ε for (ε, δ)-DP with
δ = 10−5. The experimental results show that changes in the
privacy and accuracy caused by noise calibration are similar
to those in case of MNIST database.

In conclusion, we believe that our algorithm is also effec-
tive for FL on non-i.i.d data. However, owing to the bias of
the data distribution, we observe that it is difficult to achieve
high accuracy with the same parameter setting as in the i.i.d
case. To achieve high accuracy, it is necessary to change the
parameter settings, such as the privacy budget and the number
of users.

VII. CONCLUSION
In this paper, we first observed a new privacy risk for FL, i.e.,
user dropouts of an FL network causing failure in achieving
the desired level of privacy protection. We then propose a
DP mechanism for application to FL to address such privacy
degradation and enhance DP for FL. Our algorithm satisfies
user-level DP guarantee and distributed DP-noise generation,
to prevent the privacy leak from the local update vectors of the
user or their aggregation. The idea behind the construction is
to develop a noise calibration step to ensure DP-robustness
towards user dropouts in terms of privacy. In addition, from
the experiments, we showed that the proposed mechanism
increases the level of privacy protection by 15% and 50% for
10% and 30% dropout cases, respectively, over the existing
FL mechanisms with DP. Our algorithm provides stability for

148100 VOLUME 9, 2021

C. Baek et al.: Enhancing Differential Privacy for FL at Scale

Algorithm 3: DP-FL Robust to User Dropouts (Extended)

1 Parameters:
2 noise multiplier z
3 user example limit nmax
4 clipping bound C
5 user sampling probability q
6 threshold for secret sharing k
7 lower bound of the weight sum that algorithm works n0

8 Main Algorithm:
9 Initial model θ0, user set U
10 For each i ∈ U , i has ni examples and wi = min{ ni

nmax
, 1}

11 for each round t = 0, 1, 2, . . . do
12 User: each user i ∈ U do
13 Generate DH keypairs (cSKi , cPKi) and (sSKi , sPKi)
14 Send public keys (cPKi , sPKi) and weight wi

15 Server:
16 U t

← sample user set with probability q
17 Check n0 ≤

∑
i∈U t wi and broadcast to U t

: {(cPKi , sPKi) | i ∈ U t
} and σ0← 2C

n0
z

18 User: each user i ∈ U t do
19 Generate bi and compute keys ci,j← (cPKj)c

SK
i and si,j← (sPKj)s

SK
i for j(6= i) ∈ U t

20 Compute Shamir’s (k, |U t
|) secret shares for bi and sSKi : {(j, bi,j, sSKi,j) | j ∈ U

t
}

21 Send encrypted shares ei,j of (i, j, bi,j, sSKi,j) using shared key ci,j for j(6= i) ∈ U t

22 Server:
23 Send {ei,j | i(6= j) ∈ U t

} to each user j ∈ U t

24 User: each user i ∈ U t do
25 1t+1

i ← UserUpdate(i, θ t)
26 et+1i ← N (0, n0wiσ002I)
27 Send Mi← wi1

t+1
i + et+1i + H (bi)+

∑
j∈U t ,i<j H (si,j)−

∑
j∈U t ,i>j H (si,j)

28 Server:
29 U t

A← {alive users ∈ U
t
}

30 Broadcast to U t
A : n

′
←
∑

i∈U t
A
wi, σ ′← 2C

n′ z

31 User: each user i ∈ U t
A do

32 Decrypt ej,i’s for j(6= i) ∈ U t

33 Send {bj,i | j ∈ U t
A} and {s

SK
j,i | j ∈ U

t
\ U t

A}

34 Send e′t+1i ←−et+1i +N (0, n′wiσ ′2I)

35 Server:
36 Reconstruct {bj | j ∈ U t

A} and {s
SK
j | j ∈ U

t
\ U t

A}

37 Compute {si,j | i ∈ U t
A, j ∈ U

t
\ U t

A}

38 Share θ t+1← θ t + 1
n′
∑

i∈U t
A
(Mi + e′

t+1
i − H (bi)−

∑
j∈U t\U t

A,i<j
H (si,j)+

∑
j∈U t\U t

A,i>j
H (si,j))

privacy levels without large accuracy loss even in network
where user dropouts occur frequently.

APPENDIX
DETAILED DESCRIPTION OF ALGORITHM
We provide the extended description of Algorithm 2.
We apply the approach to force the server to add noise

mentioned in the last paragraph of Section V. Furthermore,
the SMC protocol proposed by Bonawitz et al. [9] is applied
to the algorithm to explain how the algorithm actually works.
Algorithm 3 outlines the extended version of DP-FL robust
to user dropouts.

We provide a brief description of several terms about SMC
to be used in the algorithm below.

VOLUME 9, 2021 148101

C. Baek et al.: Enhancing Differential Privacy for FL at Scale

• DH keypair: DH keypair is a key pair that consists of a
secret key and a public key generated by Diffie-Hellman
Key Agreement [52]. For a given generator g of a mul-
tiplicative group with a prime order p, a DH keypair is
generated in the form of (x, gx) where x is a secret key
randomly sampled from Zp and gx is a public key. Then
two users with DH key pairs (x, gx) and (y, gy) respec-
tively, can agree the shared key gxy = (gx)y = (gy)x .

• Shamir’s secret share: SMC protocol proposed by
Bonawitz et al. exploits Shamir’s Secret Sharing [53]
to remove the masking of the dropped user. Shamir’s
(k, n) Secret Sharing allows a user to split her secret
into n shares, such that any k shares can reconstruct the
secret, but k − 1 or less shares reveal no information
about the secret. In the SMC protocol, k is a parameter
of the protocol which is determined depending on the
application. If more than k users are alive, the masking
of the dropped users can be recovered and removed using
Shamir’s Secret Sharing.

• Pseudorandom generatorH : SMC protocol proposed by
Bonawitz et al. requires a secure pseudorandom gener-
ator H . It takes a seed of a fixed length as input and
produces an output of the length of the update vector.
The use ofH can reduce the communication complexity
in the protocol by sharing only a random seed instead of
a random vector of the update vector length.

REFERENCES
[1] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,

C. Kiddon, J. Konecný, S. Mazzocchi, B. McMahan, T. V. Overveldt,
D. Petrou, D. Ramage, and J. Roselander, ‘‘Towards federated learning at
scale: System design,’’ in Proc. MLSys, 2019.

[2] Federated Learning: Collaborative Machine Learning Without Cen-
tralized Training Data. Accessed: Oct. 29, 2021. [Online]. Available:
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

[3] Privacy That Works for Everyone. Accessed: Oct. 29, 2021. [Online].
Available: https://blog.google/technology/safety-security/privacy-
everyone-io/

[4] R. Prakash and B. V. Ryswyk, ‘‘Build trust through better privacy,’’ inProc.
WWDC 2020, Jun. 2020.

[5] M. Xue and J. Freudiger, ‘‘Designing for privacy,’’ in Proc. WWDC 2019,
Jun. 2019.

[6] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, ‘‘The secret sharer:
Evaluating and testing unintended memorization in neural networks,’’ in
Proc. USENIX Secur. Symp., 2019, pp. 267–284.

[7] R. Shokri,M. Stronati, C. Song, andV. Shmatikov, ‘‘Membership inference
attacks against machine learning models,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2017, pp. 3–18.

[8] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, ‘‘Understanding
deep learning requires rethinking generalization,’’ in Proc. ICLR, 2017.

[9] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. Mcmahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, ‘‘Practical secure aggregation
for privacy-preserving machine learning,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2017, pp. 1175–1191.

[10] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and
Y. Zhou, ‘‘A hybrid approach to privacy-preserving federated learning,’’ in
Proc. 12th ACM Workshop Artif. Intell. Secur. (AISec), 2019, pp. 1–11.

[11] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, and H. Ludwig, ‘‘HybridAlpha:
An efficient approach for privacy-preserving federated learning,’’ in Proc.
12th ACM Workshop Artif. Intell. Secur. (AISec), 2019, pp. 13–23.

[12] M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu, ‘‘Multi-input
functional encryption for inner products: Function-hiding realizations and
constructions without pairings,’’ in Proc. CRYPTO, 2018, pp. 597–627.

[13] R. Shokri and V. Shmatikov, ‘‘Privacy-preserving deep learning,’’ in
Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep. 2015, pp. 1310–1321.

[14] C. R. Geyer, T. Klein, and M. Nabi, ‘‘Differentially private federated
learning: A client level perspective,’’ 2017, arXiv: 1712.07557.

[15] N. Agarwal, A. T. Suresh, X. F. Yu, S. Kumar, and B. McMahan, ‘‘cpSGD:
Communication-efficient and differentially-private distributed SGD,’’ in
Proc. NIPS, S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., 2018, pp. 7575–7586.

[16] O. Thakkar, G. Andrew, and H. B. McMahan, ‘‘Differentially private
learning with adaptive clipping,’’ 2019, arXiv:1905.03871.

[17] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, ‘‘Learning differ-
entially private recurrent language models,’’ in Proc. ICLR, 2018.

[18] V. Mugunthan, A. Peraire-Bueno, and L. Kagal, ‘‘PrivacyFL: A simulator
for privacy-preserving and secure federated learning,’’ in Proc. 29th ACM
Int. Conf. Inf. Knowl. Manage., Oct. 2020, pp. 3085–3092.

[19] L. Wang, R. Jia, and D. Song, ‘‘D2P-Fed: Differentially private federated
learning with efficient communication,’’ 2020, arXiv:2006.13039.

[20] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
‘‘Communication-efficient learning of deep networks from decentralized
data,’’ in Proc. AISTATS, 2017, pp. 1273–1282.

[21] MNIST Handwritten Digit Database. [Online]. Available: https://yann.
lecun.com/exdb/mnist/

[22] FEMNIST Dataset. [Online]. Available: https://github.com/Talwal
karLab/leaf/tree/master/data/femnist

[23] C. Dwork, ‘‘Differential privacy,’’ in Proc. ICALP, 2006, pp. 1–12.
[24] C. Dwork, F.McSherry, K. Nissim, andD.AdamSmith, ‘‘Calibrating noise

to sensitivity in private data analysis,’’ in Proc. TCC, 2006, pp. 265–284.
[25] C. Dwork and A. Roth, ‘‘The algorithmic foundations of differential pri-

vacy,’’ Found. Trends Theor. Comput. Sci., vol. 9, nos. 3–4, pp. 211–407,
2014.

[26] R. Bassily, A. Smith, and A. Thakurta, ‘‘Private empirical risk minimiza-
tion: Efficient algorithms and tight error bounds,’’ in Proc. IEEE 55th
Annu. Symp. Found. Comput. Sci., Oct. 2014, pp. 464–473.

[27] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, ‘‘Differentially pri-
vate empirical risk minimization,’’ J. Mach. Learn. Res., vol. 12,
pp. 1069–1109, Mar. 2011.

[28] R. Iyengar, J. P. Near, D. Song, O. Thakkar, A. Thakurta, and L. Wang,
‘‘Towards practical differentially private convex optimization,’’ in Proc.
IEEE Symp. Secur. Privacy (SP), May 2019, pp. 299–316.

[29] M. Abadi, A. Chu, I. Goodfellow, H. B. Mcmahan, I. Mironov, K. Talwar,
and L. Zhang, ‘‘Deep learning with differential privacy,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 308–318.

[30] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex, ‘‘Differentially private
model publishing for deep learning,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), May 2019, pp. 332–349.

[31] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and
Ú. Erlingsson, ‘‘Scalable private learning with PATE,’’ in Proc. ICLR,
2018.

[32] X. Wu, F. Li, A. Kumar, K. Chaudhuri, S. Jha, and J. Naughton, ‘‘Bolt-on
differential privacy for scalable stochastic gradient descent-based analyt-
ics,’’ in Proc. ACM Int. Conf. Manage. Data, May 2017, pp. 1307–1322.

[33] K.Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, Q. S. T. Quek,
and H. V. Poor, ‘‘Federated learning with differential privacy: Algorithms
and performance analysis,’’ IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 3454–3469, 2020.

[34] X. Huang, Y. Ding, Z. L. Jiang, S. Qi, X. Wang, and Q. Liao, ‘‘DP-FL:
A novel differentially private federated learning framework for the unbal-
anced data,’’ World Wide Web, vol. 23, no. 4, pp. 2529–2545, Jul. 2020.

[35] Q. Zheng, S. Chen, Q. Long, and J. W. Su, ‘‘Federated f-differential
privacy,’’ in Proc. AISTATS, A. Banerjee and K. Fukumizu, Eds., vol. 130,
2021, pp. 2251–2259.

[36] J. Dong, A. Roth, and J. W. Su, ‘‘Gaussian differential privacy,’’ 2019,
arXiv:1905.02383.

[37] A. Bhowmick, C. J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers,
‘‘Protection against reconstruction and its applications in private federated
learning,’’ 2018, arXiv:1812.00984.

[38] J. Li, M. Khodak, S. Caldas, and A. Talwalkar, ‘‘Differentially private
meta-learning,’’ in Proc. ICLR, 2020, pp. 1–18.

[39] V. Nikolaenko, U.Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft,
‘‘Privacy-preserving ridge regression on hundreds of millions of records,’’
in Proc. IEEE Symp. Secur. Privacy, May 2013, pp. 334–348.

148102 VOLUME 9, 2021

C. Baek et al.: Enhancing Differential Privacy for FL at Scale

[40] J. Yuan and S. Yu, ‘‘Privacy preserving back-propagation neural network
learning made practical with cloud computing,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 212–221, Jan. 2014.

[41] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, ‘‘Low latency privacy
preserving inference,’’ in Proc. ICML, vol. 97, 2019, pp. 812–821.

[42] V. Chen, V. Pastro, and M. Raykova, ‘‘Secure computation for machine
learning with SPDZ,’’ 2019, arXiv:1901.00329.

[43] P. Mohassel and P. Rindal, ‘‘ABY 3: A mixed protocol framework for
machine learning,’’ inProc. ACMSIGSACConf. Comput. Commun. Secur.,
Oct. 2018, pp. 35–52.

[44] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and
F. Koushanfar, ‘‘Chameleon: A hybrid secure computation framework for
machine learning applications,’’ in Proc. Asia Conf. Comput. Commun.
Secur., May 2018, pp. 707–721.

[45] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin,
‘‘FALCON: Honest-majority maliciously secure framework for private
deep learning,’’ in Proc. Priv. Enhancing Technol. (PoPETs), 2021,
pp. 188–208.

[46] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar,
‘‘Semi-supervised knowledge transfer for deep learning from private train-
ing data,’’ in Proc. ICLR, 2017, pp. 1–16.

[47] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016. [Online]. Available:
https://www.deeplearningbook.org

[48] Tutorial for MNIST in Tensorflow. [Online]. Available: https://github.com/
tensorflow/privacy/blob/master/tutorials/mnist_dpsgd_tutorial_keras.py

[49] RDP Accountant in Tensorflow-Privacy. [Online]. Available: https://
github.com/tensorflow/privacy/tree/master/tensorflow_privacy/privacy

[50] Libraries for FEMNIST. Accessed: Oct. 29, 2021. [Online]. Available:
https://github.com/tensorflow/federated/blob/main/tensorflow_federated/
python/simulation/datasets/emnist.py

[51] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, ‘‘Federated
learning with non-iid data,’’ 2018, arXiv:1806.00582.

[52] W. Diffie andM. Hellman, ‘‘New directions in cryptography,’’ IEEE Trans.
Inf. Theory, vol. IT-22, no. 6, pp. 644–654, Nov. 1976.

[53] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

CHUNGHUN BAEK received the Ph.D. degree
in mathematics from Seoul National University
(SNU), in 2016. He is currently a Senior Engineer
with Samsung Research. His research interests
include computational number theory, cryptogra-
phy, information security, and data privacy.

SUNGWOOK KIM received the B.S. and joint
M.S./Ph.D. degrees in mathematics from Seoul
National University (SNU), South Korea, in 2005
and 2012, respectively. He is currently an Assis-
tant Professor with the Department of Infor-
mation Security, Seoul Women’s University
(SWU). Before joining SWU, in 2020, he was
the Principal Engineer of Samsung Research,
Samsung Electronics, Seoul. His research inter-
ests include cryptography, information security,
and privacy-preserving technology.

DONGKYUN NAM is working as an Engineer
with Samsung Research. His research interests
include data privacy and distributed systems.

JIHOON PARK is currently working with the
Security Team, Samsung Research, as a Staff
Engineer. His research interests include privacy,
blockchain, zero knowledge proof, and multiparty
computation.

VOLUME 9, 2021 148103

