Operational
semantics

Operational semantics is a category of
formal programming language semantics

in which certain desired properties of a
program, such as correctness, safety or

security, are verified by constructing

proofs from logical statements about its
execution and procedures, rather than by

attaching mathematical meanings to its
terms (denotational semantics).

https://en.m.wikipedia.org/wiki/Main_Page
https://en.m.wikipedia.org/wiki/Formal_language
https://en.m.wikipedia.org/wiki/Semantics_(computer_science)
https://en.m.wikipedia.org/wiki/Computer_program
https://en.m.wikipedia.org/wiki/Formal_verification
https://en.m.wikipedia.org/wiki/Mathematical_proof
https://en.m.wikipedia.org/wiki/Execution_(computing)
https://en.m.wikipedia.org/wiki/Denotational_semantics

Operational semantics are classified in
two categories: structural operational
semantics (or small-step semantics)
formally describe how the individual steps

of a computation take place in a
computer-based system; by opposition
natural semantics (or big-step semantics)
describe how the overall results of the
executions are obtained. Other

approaches to providing a formal

semantics of programming_languages

include axiomatic semantics and

denotational semantics.

The operational semantics for a
programming_language describes how a

https://en.m.wikipedia.org/wiki/Computation
https://en.m.wikipedia.org/wiki/Formal_semantics_of_programming_languages
https://en.m.wikipedia.org/wiki/Axiomatic_semantics
https://en.m.wikipedia.org/wiki/Denotational_semantics
https://en.m.wikipedia.org/wiki/Programming_language

valid program is interpreted as sequences
of computational steps. These sequences
then are the meaning of the program. In

the context of functional programming, the
final step in a terminating sequence
returns the value of the program. (In
general there can be many return values
for a single program, because the program
could be nondeterministic, and even for a

deterministic program there can be many
computation sequences since the
semantics may not specify exactly what
sequence of operations arrives at that

value.)

https://en.m.wikipedia.org/wiki/Functional_programming
https://en.m.wikipedia.org/wiki/Nondeterministic_algorithm

Perhaps the first formal incarnation of
operational semantics was the use of the
lambda calculus to define the semantics

of Lisp.!! Abstract machines in the

tradition of the SECD machine are also

closely related.

History

The concept of operational semantics was
used for the first time in defining the
semantics of Algol 68. The following

statement is a quote from the revised
ALGOL 68 report:

The meaning of a program in the
strict language is explained in

https://en.m.wikipedia.org/wiki/Lambda_calculus
https://en.m.wikipedia.org/wiki/Lisp_(programming_language)
https://en.m.wikipedia.org/wiki/Abstract_machine
https://en.m.wikipedia.org/wiki/SECD_machine
https://en.m.wikipedia.org/wiki/Algol_68

terms of a hypothetical
computer which performs the
set of actions that constitute the
elaboration of that program.
(Algol68, Section 2)

The first use of the term "operational
semantics” in its present meaning is
attributed to Dana Scott (Plotkin04). What

follows is a quote from Scott's seminal

paper on formal semantics, in which he
mentions the "operational” aspects of
semantics.

It is all very well to aim for a
more ‘abstract’ and a ‘cleaner’

https://en.m.wikipedia.org/wiki/Dana_Scott

approach to semantics, but if the
plan is to be any good, the
operational aspects cannot be
completely ignored. (Scott70)

Approaches

Gordon Plotkin introduced the structural

operational semantics, Matthias Felleisen
and Robert Hieb the reduction

semantics 2! and Gilles Kahn the natural

semantics.

https://en.m.wikipedia.org/wiki/Gordon_Plotkin
https://en.m.wikipedia.org/wiki/Matthias_Felleisen
https://en.m.wikipedia.org/wiki/Gilles_Kahn

Small-step semantics

Structural operational semantics

Structural operational semantics (SOS,
also called structured operational
semantics or small-step semantics) was
introduced by Gordon Plotkin in

(Plotkin81) as a logical means to define

operational semantics. The basic idea
pehind SOS is to define the behavior of a
program in terms of the behavior of its

narts, thus providing a structural, i.e.,

syntax-oriented and inductive, view on

operational semantics. An SOS
specification defines the behavior of a

https://en.m.wikipedia.org/wiki/Gordon_Plotkin
https://en.m.wikipedia.org/wiki/Inductive_definition

program in terms of a (set of) transition

relation(s). SOS specifications take the

form of a set of inference rules that define

the valid transitions of a composite piece
of syntax in terms of the transitions of its

components.

For a simple example, we consider part of
the semantics of a simple programming
language; proper illustrations are given in

Plotkin81 and Hennessy90, and other

textbooks. Let range over
programs of the language, and let s range
over states (e.g. functions from memory
locations to values). If we have
expressions (ranged over by), values

https://en.m.wikipedia.org/wiki/State_transition_system
https://en.m.wikipedia.org/wiki/Inference_rule

(V') and locations (/.), then a memory
update command would have semantics:

Informally, the rule says that "if the
expression /7 in state s reduces to value
, then the program will update

the state s with the assignment

The semantics of sequencing can be given

by the following three rules:

Informally, the first rule says that, if

program in state s finishes in state s,
then the program in state s will
reduce to the program in state s . (You

can think of this as formalizing "You can
run C ¢, and then run using the
resulting memory store.) The second rule
says that if the program in state s can
reduce to the program with state s,
then the program in state s will
reduce to the program in state
(You can think of this as formalizing the
principle for an optimizing compiler: "You
are allowed to transform as if it were
stand-alone, even if it is just the first part
of a program.") The semantics is

structural, because the meaning of the
sequential program , is defined by
the meaning of and the meaning of

If we also have Boolean expressions over
the state, ranged over by /7, then we can
define the semantics of the while

command:

Such a definition allows formal analysis of
the behavior of programs, permitting the

study of relations between programs.

Important relations include simulation

https://en.m.wikipedia.org/wiki/Relation_(mathematics)
https://en.m.wikipedia.org/wiki/Simulation_preorder

preorders and bisimulation. These are

especially useful in the context of

concurrency theory.

Thanks to its intuitive look and easy-to-
follow structure, SOS has gained great
popularity and has become a de facto
standard in defining operational
semantics. As a sign of success, the
original report (so-called Aarhus report) on
SOS (Plotkin81) has attracted more than
1000 citations according to the CiteSeer
[1]_(http://citeseer.ist.psu.edu/673965.htm
1) , making it one of the most cited

technical reports in Computer Science.

https://en.m.wikipedia.org/wiki/Simulation_preorder
https://en.m.wikipedia.org/wiki/Bisimulation
https://en.m.wikipedia.org/wiki/Concurrency_(computer_science)
http://citeseer.ist.psu.edu/673965.html
https://en.m.wikipedia.org/wiki/Computer_Science

Reduction semantics

Reduction semantics is an alternative
presentation of operational semantics. Its
key ideas were first applied to purely
functional call by name and call by value

variants of the lambda calculus by Gordon

Plotkin in 19753 and generalized to

higher-order functional languages with

imperative features by Matthias Felleisen
in his 1987 dissertation.!4! The method
was further elaborated by Matthias
Felleisen and Robert Hieb in 1992 into a
fully equational theory for control and

state.l?! The phrase “reduction semantics”

https://en.m.wikipedia.org/wiki/Call_by_name
https://en.m.wikipedia.org/wiki/Call_by_value
https://en.m.wikipedia.org/wiki/Lambda_calculus
https://en.m.wikipedia.org/wiki/Gordon_Plotkin
https://en.m.wikipedia.org/wiki/Matthias_Felleisen
https://en.m.wikipedia.org/wiki/Equational_theory
https://en.m.wikipedia.org/wiki/Control_flow
https://en.m.wikipedia.org/wiki/Program_state

itself was first coined by Felleisen and
Daniel Friedman in a PARLE 1987 paper.[2

Reduction semantics are given as a set of
reduction rules that each specify a single
potential reduction step. For example, the
following reduction rule states that an
assignment statement can be reduced if it
sits immediately beside its variable
declaration:

To get an assignment statement into such
a position it is “bubbled up” through
function applications and the right-hand
side of assignment statements until it

https://en.m.wikipedia.org/wiki/Friedman

reaches the proper point. Since intervening
expressions may declare distinct
variables, the calculus also demands an
extrusion rule for expressions. Most
published uses of reduction semantics
define such “bubble rules” with the
convenience of evaluation contexts. For
example, the grammar of evaluation

contexts in a simple call by value language

can be given as

where ¢ denotes arbitrary expressions and
denotes fully-reduced values. Each
evaluation context includes exactly one

https://en.m.wikipedia.org/wiki/Call_by_value

hole | | into which a term is plugged in a
capturing fashion. The shape of the
context indicates with this hole where
reduction may occur. To describe
“bubbling” with the aid of evaluation
contexts, a single axiom suffices:

This single reduction rule is the lift rule
from Felleisen and Hieb's lambda calculus
for assignment statements. The
evaluation contexts restrict this rule to
certain terms, but it is freely applicable in

any term, including under lambdas.

Following Plotkin, showing the usefulness
of a calculus derived from a set of
reduction rules demands (1) a Church-
Rosser lemma for the single-step relation,
which induces an evaluation function, and
(2) a Curry-Feys standardization lemma for
the transitive-reflexive closure of the
single-step relation, which replaces the
non-deterministic search in the evaluation
function with a deterministic left-
most/outermost search. Felleisen showed
that imperative extensions of this calculus
satisfy these theorems. Consequences of
these theorems are that the equational
theory—the symmetric-transitive-reflexive

closure—is a sound reasoning principle for

these languages. However, in practice,
most applications of reduction semantics
dispense with the calculus and use the
standard reduction only (and the evaluator
that can be derived from it).

Reduction semantics are particularly
useful given the ease by which evaluation
contexts can model state or unusual
control constructs (e.g., first-class

continuations). In addition, reduction

semantics have been used to model

object-oriented languages,!®! contract

systems, exceptions, futures, call-by-need,
and many other language features. A
thorough, modern treatment of reduction

https://en.m.wikipedia.org/wiki/First-class_continuations
https://en.m.wikipedia.org/wiki/Object-oriented
https://en.m.wikipedia.org/wiki/Design_by_contract

semantics that discusses several such
applications at length is given by Matthias
Felleisen, Robert Bruce Findler and
Matthew Flatt in Semantics Engineering
with PLT Redex.[Z]

Big-step semantics

Natural semantics

Big-step structural operational semantics
is also known under the names natural
semantics, relational semantics and
evaluation semantics.!8! Big-step
operational semantics was introduced

under the name natural semantics by Gilles

https://en.m.wikipedia.org/wiki/Gilles_Kahn

Kahn when presenting Mini-ML, a pure
dialect of ML.

One can view big-step definitions as
definitions of functions, or more generally
of relations, interpreting each language
construct in an appropriate domain. Its
intuitiveness makes it a popular choice for
semantics specification in programming
languages, but it has some drawbacks that
make it inconvenient or impossible to use
In many situations, such as languages with

control-intensive features or concurrency.

A big-step semantics describes in a divide-
and-conguer manner how final evaluation

https://en.m.wikipedia.org/wiki/Gilles_Kahn
https://en.m.wikipedia.org/wiki/ML_(programming_language)

results of language constructs can be
obtained by combining the evaluation
results of their syntactic counterparts
(subexpressions, substatements, etc.).

Comparison

There are a number of distinctions
between small-step and big-step
semantics that influence whether one or
the other forms a more suitable basis for
specifying the semantics of a
programming language.

Big-step semantics have the advantage of
often being simpler (needing fewer
inference rules) and often directly

correspond to an efficient implementation
of an interpreter for the language (hence
Kahn calling them "natural”.) Both can lead
to simpler proofs, for example when
proving the preservation of correctness

under some program transformation. !

The main disadvantage of big-step
semantics is that non-terminating
(diverging) computations do not have an

inference tree, making it impossible to
state and prove properties about such

computations.2]

Small-step semantics give more control

over the details and order of evaluation. In

https://en.m.wikipedia.org/wiki/Program_transformation
https://en.m.wikipedia.org/wiki/Divergence_(computer_science)

the case of instrumented operational
semantics, this allows the operational
semantics to track and the semanticist to
state and prove more accurate theorems
about the run-time behaviour of the
language. These properties make small-
step semantics more convenient when

proving type soundness of a type system

against an operational semantics.?!

See also

Algebraic semantics

Axiomatic semantics

Denotational semantics

https://en.m.wikipedia.org/wiki/Type_soundness
https://en.m.wikipedia.org/wiki/Algebraic_semantics_(computer_science)
https://en.m.wikipedia.org/wiki/Axiomatic_semantics
https://en.m.wikipedia.org/wiki/Denotational_semantics

Formal semantics of programming

languages

References

1. McCarthy, John. "Recursive Functions of
Symbolic Expressions and Their
Computation by Machine, Part I" (https://we
b.archive.org/web/20131004215327/http.//
www-formal.stanford.edu/jmc/recursive.ht
ml) . Archived from the original (http://www
-formal.stanford.edu/jmc/recursive.html)
on 2013-10-04. Retrieved 2006-10-13.

2. Felleisen, M.; Hieb, R. (1992). "The Revised
Report on the Syntactic Theories of
Sequential Control and State". Theoretical
Computer Science. 103 (2): 235-271.
doi:10.10716/0304-3975(92)90014-7 (http

https://en.m.wikipedia.org/wiki/Formal_semantics_of_programming_languages
https://en.m.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
https://web.archive.org/web/20131004215327/http://www-formal.stanford.edu/jmc/recursive.html
http://www-formal.stanford.edu/jmc/recursive.html
https://en.m.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2F0304-3975%2892%2990014-7

s://doi.org/10.1016%2F0304-3975%2892%
2990014-7) .

. Plotkin, Gordon (1975). "Call-by-name, call-
by-value and the A-calculus” (https://www.s
ciencedirect.com/science/article/pii/03043
97575900171/pdf?’md5=db2e67c1ada’/163
a28f124934b483f3a&pid=1-s2.0-03043975
75900171-main.pdf) (PDF). Theoretical
Computer Science. 1 (2): 125-1509.
doi:10.1016/0304-3975(75)90017-1 (http
s.//doi.org/10.1016%2F0304-3975%2875%
2990017-1) . Retrieved July 22, 2021.

. Felleisen, Matthias (1987). The calculi of
Lambda-v-CS conversion: a syntactic theory
of control and state in imperative higher-
order programming languages (https.//ww

w2.ccs.neu.edu/racket/pubs/dissertation-f

https://doi.org/10.1016%2F0304-3975%2892%2990014-7
https://www.sciencedirect.com/science/article/pii/0304397575900171/pdf?md5=db2e67c1ada7163a28f124934b483f3a&pid=1-s2.0-0304397575900171-main.pdf
https://en.m.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2F0304-3975%2875%2990017-1
https://www2.ccs.neu.edu/racket/pubs/dissertation-felleisen.pdf

elleisen.pdf) (PDF) (PhD). Indiana
University. Retrieved July 22, 2021.

. Felleisen, Matthias; Friedman, Daniel P
(1987). "A Reduction Semantics for
Imperative Higher-Order Languages"”.
Proceedings of the Parallel Architectures
and Languages Europe. International
Conference on Parallel Architectures and
Languages Europe. Vol. 1. Springer-Verlag.
pp. 206—223. doi:10.1007/3-540-17945-
3_12 (https://doi.org/10.1007%2F3-540-17
945-3_12) .

. Abadi, M.; Cardelli, L. (8 September 2012).
A Theory of Objects (https://books.google.c
om/books?id=AgzSBWAAQBAJ&q=%220pe
rational+semantics %22) .

ISBN 9781441985989.

https://www2.ccs.neu.edu/racket/pubs/dissertation-felleisen.pdf
https://en.m.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F3-540-17945-3_12
https://books.google.com/books?id=AgzSBwAAQBAJ&q=%22operational+semantics%22
https://en.m.wikipedia.org/wiki/ISBN_(identifier)
https://en.m.wikipedia.org/wiki/Special:BookSources/9781441985989

/. Felleisen, Matthias; Findler, Robert Bruce;
Flatt, Matthew (2009). Semantics
Engineering with PLT Redex (https://mitpres
s.mit.edu/books/semantics-engineering-plt
-redex) . The MIT Press. ISBN 978-0-262-
06275-6.

8. University of lllinois CS422 (https://web.arc
hive.org/web/20131019133339/https.//fsl.
cs.illinois.edu/images/6/63/CS422-Spring-
2010-BigStep.pdf)

9. Xavier Leroy. "Coinductive big-step
operational semantics”.

Further reading

Gilles Kahn. "Natural Semantics".

Proceedings of the 4th Annual

Symposium on Theoretical Aspects of

https://mitpress.mit.edu/books/semantics-engineering-plt-redex
https://en.m.wikipedia.org/wiki/ISBN_(identifier)
https://en.m.wikipedia.org/wiki/Special:BookSources/978-0-262-06275-6
https://web.archive.org/web/20131019133339/https://fsl.cs.illinois.edu/images/6/63/CS422-Spring-2010-BigStep.pdf
https://en.m.wikipedia.org/wiki/Xavier_Leroy
https://en.m.wikipedia.org/wiki/Gilles_Kahn

Computer Science. Springer-Verlag.
London. 1987.

Gordon D. Plotkin. A Structural Approach

to Operational Semantics (http://citesee
r.ist.psu.edu/673965.html) . (1981)
Tech. Rep. DAIMI FN-19, Computer
Science Department, Aarhus University,

Aarhus, Denmark. (Reprinted with
corrections in J. Log. Algebr. Program.
60-61: 17-139 (2004), preprint (http://ho
mepages.inf.ed.ac.uk/gdp/publications/

Gordon D. Plotkin. The Origins of
Structural Operational Semantics. J.
Log. Algebr. Program. 60-61:3-15, 2004.

https://en.m.wikipedia.org/wiki/Gordon_Plotkin
http://citeseer.ist.psu.edu/673965.html
http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf
https://en.m.wikipedia.org/wiki/Gordon_Plotkin

(preprint (http://homepages.inf.ed.ac.u
k/gdp/publications/Origins_S0OS.pdf)).

Dana S. Scott. Outline of a Mathematical

Theory of Computation, Programming

Research Group, Technical Monograph
PRG-2, Oxford University, 1970.

Adriaan van Wijngaarden et al. Revised

Report on the Algorithmic Language
ALGOL 68. IFIP. 1968. ([2]_(http://vestein.
arb-phys.uni-dortmund.de/~wb/RR/rr.pd

f))

Matthew Hennessy. Semantics of

Programming Languages. Wiley, 1990.
available online (https://www.cs.tcd.ie/

http://homepages.inf.ed.ac.uk/gdp/publications/Origins_SOS.pdf
https://en.m.wikipedia.org/wiki/Dana_Scott
https://en.m.wikipedia.org/wiki/Adriaan_van_Wijngaarden
https://en.m.wikipedia.org/wiki/ALGOL_68
http://vestein.arb-phys.uni-dortmund.de/~wb/RR/rr.pdf
https://en.m.wikipedia.org/wiki/Matthew_Hennessy
https://www.cs.tcd.ie/matthew.hennessy/splexternal2015/resources/sembookWiley.pdf

matthew.hennessy/splexternal2015/res

ources/sembookWiley.pdf), .

External links

s Media related to Operational

semantics at Wikimedia Commons

Retrieved from
"https://en.wikipedia.org/w/index.php?
title=Operational_semantics&oldid=117107/7501"

This page was last edited on 18 August 2023, at
22:43 (UTC). -

Content is available under CC BY-SA 4.0 unless
otherwise noted.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.cs.tcd.ie/matthew.hennessy/splexternal2015/resources/sembookWiley.pdf
https://en.m.wikipedia.org/wiki/File:Commons-logo.svg
https://commons.wikimedia.org/wiki/Category:Operational_semantics
https://en.wikipedia.org/w/index.php?title=Operational_semantics&oldid=1171077501

