arm
Arm Security Advisory

ASA-010

Version: 1.0

Security weakness in PCS for CMSE

Confidential
Copyright © 2024 Arm Limited (or its affiliates).
All rights reserved.

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

Security weakness in PCS for CMSE
Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Release information

Document history

Version Date Confidentiality Change
1.0 13/02/2024 CONFIDENTIAL First Published

Confidential Proprietary Notice

This document is CONFIDENTIAL and any use by you is subject to the terms of the agreement
between you and Arm or the terms of the agreement between you and the party authorised by Arm to
disclose this document to you.

This document is protected by copyright and other related rights and the practice or implementation
of the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means without
the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise
to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not
use or permit others to use the information: (i) for the purposes of determining whether
implementations infringe any third party patents; (ji) for developing technology or products which
avoid any of Arm's intellectual property; or (iii) as a reference for modifying existing patents or patent
applications or creating any continuation, continuation in part, or extension of existing patents or
patent applications; or (iv) for generating data for publication or disclosure to third parties, which
compares the performance or functionality of the Arm technology described in this document with any
other products created by you or a third party, without obtaining Arm's prior written consent.

THISDOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations
to assure that this document or any portion thereof is not exported, directly or indirectly, in violation
of such export laws. Use of the word “partner” in reference to Arm's customers is not intended to

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Confidential
Page 2 of 16

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

create or refer to any partnership relationship with any other company. Arm may make changes to this
document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through
or signed written agreement covering this document with Arm, then the click through or signed
written agreement prevails over and supersedes the conflicting provisions of these terms. This
document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English
version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of
Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please follow
Arm's trademark usage guidelines at http://www.arm.com/company/policies/trademarks.
Copyright ©2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status

This document is Confidential. This document may only be used and distributed in accordance with the
terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Web Address

http://www.arm.com

Contact

psirt@arm.com

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Confidential
Page 3of 16

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

Contents

1 Introduction 5
2 Issue description 6
3 Impact 7
4 Information for Toolchain Users 8
4.1 1S MY Program affECEEA 8
4.1 1 REQUITEA CONAITIONS ... 8
4.1.2 Impact of an OUt-0F-TanNZE VAlIUE...........coooooeeeeoeeeeeeeeeeeeeeee oo 8
4.1.3 OUL Of DOUNGS QCCESSES............oooreeeiiis i 8
4. 1.4 OVEITIOW CRECKS ... 9
4.1.5 SWILCH SEAtEMENT ... st 9
4.2 Affected tOOICNAINS ... 10
A3 AFFECEEA LYPES ...t s et se s 10
4.3 L ENUMEIALEA LYPES ... s e s 11
4.3.2Wide CharaCterS WCRNAT T ..ottt s e sesesesesesesanens 11
4.3.3 BItINEIND oo 12
4.3.4 Other type classes such as Floating Point and Aggregates.........ccoocecoeccneeve, 12
4.4 SOFtWAre MITIZATIONSoooeoeeeeeee e 13
4.4.1 Recompile secure state with updated tOO0IS..........c.o.oooeeeeeeeeeeeeeeeeeeeee e 13
4.4.2 Change API between Secure and Non-Secure state...........ooooeecoeecoeeeeeeeceeeeeceseee 13
4.4.31Inline assemMbBly WOIKarOUNG ... 13
5 Information for Toolchain Developers..........eeererererereenenenns 15
5.1 1s My to0lIChain affECEEA?............o e 15
5.2 TOOICAIN SOIULIONS ...ooooro s 15
6 References 16

Copyright ©2024 Arm Limited (or its affiliates). All rights reserved.
Confidential
Page 4 of 16

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

1 Introduction

This security weakness relates to procedure calls between non-secure and secure states when
using the Cortex®-M Security Extensions (CMSE). You might be affected if:

e Toolchain user: you develop code for Armv8-M secure state and use CMSE-compliant
procedure calls to or from non-secure state and you pass argument or return types of
size less than 32-bits. See Information for Toolchain Users for further details.

e Toolchain developer: your toolchain implements support for CMSE-compliant
procedure calls. See Information for Toolchain Developers for further details.

e Information for Toolchain Users for further details.

e Toolchain developer: your toolchain implements support for CMSE-compliant procedure
calls. See Information for Toolchain Developers for further details.

Copyright ©2024 Arm Limited (or its affiliates). All rights reserved.
Confidential
Page 5of 16

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

2 Issue description

The Armv8-M architecture for microcontrollers defines an optional Security Extension. The
Security Extension is designed to combine code from multiple vendors without requiring trust
between them. It achieves this by partitioning processor state and memory into Secure and
Non-secure states and provides controlled mechanisms to transfer execution and data
between these.

To make the features of the Security Extension accessible to software developers, the Cortex-M
Security Extensions (CMSE) defines C language support to place code and data in Secure and
Non-secure states and to make function calls between states.

Software written to the guidelines in ARMv8-M Secure software guidelines 2.0 using tools that
implement Arm v8-M Security Extensions Requirements on Development Tools separate
Secure state and Non-secure state:

e Non-secure state can only call functions in Secure state that have veneers in the Non-
secure Callable region that forward control flow to an entry function in Secure state.
Non-secure state can pass data to Secure state via function parameters. The Non-
secure state code for a function call follows all the standard AAPCS32 rules.

e Secure state may call functions in Non-secure state via a BLXNS instruction. The Non-
secure state function may return a value to Secure state. The Non-secure state
functions called from Secure state follow all the standard AAPCS32 rules.

In normal operation, Non-secure state follows all the AAPCS32 rules when calling entry
functions. All integral types with a size less than a word are zero or sign extended to a word.
Return values from Non-secure functions called by Secure state are also zero or sign extended
when required by the AAPCS32.

If Non-secure state is compromised by an attacker, then Secure state functions may be called
with arguments, or Non-secure functions may return values, that are not zero or sign extended.
To perform an attack via calling an entry function an attacker must have the following
capabilities:

e Ability to set the arguments of function calls. For example, via a gadget that sets one of
the 4 argument registers rO, r1, r2 or r3to avalue of the attacker’s choice.

e Ability to call the Non-secure gateway veneer for the entry function. For example, via a
ROP or JOP gadget using the address of the Non-secure gateway veneer or targeting a
direct function call to the Non-secure gateway after the sign or zero extension of
parameters.

To perform an attack via areturn value requires the attacker to substitute a function that
Secure state is calling with a malicious implementation. This may occur if an attacker does not
have access to Secure state but has compromised the integrity of Non-secure state.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Confidential
Page 6 of 16

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

3 Impact

An attacker who can pass out-of-range values to code executing in Secure state might be able
to cause incorrect operation in Secure state, for example:

e Anout-of-range value used as an array index might allow unbounded memory accesses
to occur (CWE-119).

e Anout-of-range value used in a calculation might allow incorrect results to be
produced (CWE-682).

The exact impact cannot be determined without examination of the secure code and how it
processes the affected type. For this reason, Arm is not publishing a CVSS score for this issue.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Confidential
Page 7 of 16

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

4 Information for Toolchain Users

This information is for toolchain users who are developing secure code using CMSE. It is
assumed the reader is familiar with the Armv8-M security model and how C source code maps
onto this using the procedure call standard.

4.1. Is my program affected?

4.1.1 Required conditions
The following conditions must all be met for the program to be at risk of being affected:

e Theprogramrunsin Secure state onan Arm CPU that implements the Security
Extension, also known as Arm TrustZone for Armv8-M.

e Theprogram follows the CMSE standard, using Non-secure entry functions as entry
points to Secure state, and Non-secure calls for calls to Non-secure state from Secure
state.

e Integral types of less than word size (32-bits) are passed as arguments to entry
functions or are returned from Non-secure functions called via Non-secure calls from
Secure state. See Affected types for further details.

e Thereisapaththrough Secure-state where having an out-of-range value in one of the
affected arguments or return values can cause a Denial of service or incorrect
operation of Secure state.

4.1.2 Impact of an out-of-range value

In many cases an out-of-range parameter or return value will not lead to incorrect operation of
Secure state. For example, an existing bounds check may catch out-of-range values. Due to the
variability of compiler optimizations, such as those that remove bounds checks based on the
range of values a type can represent, Arm recommends that the disassembly of the secure code
is studied to trace the impact of out-of-range values.

The following is a non-exhaustive list of problems that could occur.

4.1.3 Out of bounds accesses

The compiler may use information about the type to optimize away bounds checks.

#include <arm cmse.h>
#define ARRAY SIZE (256)

char array[ARRAY SIZE];

char attribute ((cmse nonsecure entry))
secureFunction (unsigned char index) {

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Confidential
Page 8 of 16

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

Bounds checks that cannot be inferred from the type are not optimized away. For example:

4.1.4 Overflow checks

The Cert C coding standard requires that integer expressions are guarded against overflow. A
modification of the Compliant Solution adapted for short types is:

This overflow check depends on'ss_a and ss_b being signed short values. Out of bounds values
canoverflow the SHRT MAX - ss_band not get caught by the overflow check.

4.1.5 Switch statement

A switch statement with a case for each of the values in a type and no default value can be
implemented by a jump table. As every value permitted by the type has a case the range check
can be optimized away. For example:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Confidential

Page 9 of 16

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

Such a switch statement may be implemented as a jump table, for example:

movw rl, :lowerl6:.Lswitch.table.f
movt rl, :upperl6:.Lswitch.table.f
// r0 is parameter x rl = base of table
1ldrb r0, [rl, x0]
With an out-of range x, the table may read outside the bounds of the branch table, potentially

leaking information from Secure state or crashing the program leading to a denial of service.

4.2. Affected toolchains

The table below shows the known toolchains that can generate code with the weakness in the
Affected Versions column. The Fixed Versions column includes updated tools that do not
generate code that is affected by the weakness.

Arm Compiler for Embedded 6.13-621 6.22 (planned)
Arm Compiler for Embedded 6.16 all versions. None available
FuSa

clang Clang 11 -Clang 18 Clang 19 (planned)

Also includes any compiler
that supports CMSE that is
based on llvm technology from
LLVM 11 -LLVM 18

GCC GCC10-GCC 13 GCC 14 (planned)

Developers who are using other toolchains should contact their toolchain vendor to determine
whether they are impacted and about the availability fixes.

4.3. Affected types

This section describes the types that may be affected by this weakness.

The AAPCS32 in sections Data Types and Alignment has a table of Fundamental Data Types
giving the byte size and alignment of each of the types. For this weakness, all types have a Type
Class of Integral. The mapping of C and C++ built-in data types to the Fundamental Data Types
is given in another table Arithmetic Types. The table below shows the integral Fundamental
Data Types, their mapping to C and C++ built-in data types, and whether they are affected by
the weakness.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Confidential
Page 10 0of 16

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

Unsigned byte char, unsigned 1 Yes
char, bool,
__Bool
Signed byte signed char 1 Yes
Unsigned half- unsigned short 2 Yes
word
Signed half-word | short 2 Yes
Unsigned word unsigned int, 4 No

unsigned long

Signed word int, long 4 No
Unsigned double- |unsigned long 8 No
word long

Signed double- long long 8 No
word

4.3.1 Enumerated types

Enumerated types like a C/C++ enum, whenimplemented to strictly conform to the AAPCS32
use a signed word fundamental type. A common procedure call variant implemented by
armclang, clang and GCC is -fshort-enums which uses the smallest possible integral data
type that can represent the values of the enum. For example, an enum with values between -
128 and +127 can be represented by the Signed Byte integral type.

e Programs that use -fshort-enums must treat the enumerated type as the smallest
integral type that can represent the values in the enumeration.

e Programs that use -fno-short-enums do not need to consider enumerated types as
the smallest integral type used in this case is a Signed word.

4.3.2 Wide characters wchar_t

The AAPCS32 preferred integral type for wchar t is Unsigned word. Like enumerated types,
armclang, clang and GCC have an option called -fshort-wchar that uses Unsigned half-
word instead.

Programs that use - fno-short-wchar do not need to consider wide characters as the
smallest integral type used in this case is an Unsigned word.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Confidential
Page 11 0of 16

Arm Security Advisory:

Security weakness in PCS for CMSE

4.3.3 _BitInt(N)

ASA-010
V10

_BitInt (N) isaC2Xextensionto provide a Fundamental Type for N-bit integers. Uses of
_BitInt(N) orusigned BitInt (N) whereN <=64 are mapped tothe smallest integral
type where byte-size of the integral type * 8 >= N. Larger values of N are assigned to arrays of
fundamental types. The table below shows the mappings of _BitInt(N) where N <= 64 to the

integral types and whether they are affected by the weakness.

32<N<=64

word

BitInt(N): N <=8 Signed byte 1 Yes
unsigned _BitInt(N): | Unsigned byte 1 Yes
N<=8

_BitInt(N):8 <N <= | Signed half-word 2 Yes
16

unsigned _BitInt(N): | Unsigned half-word | 2 Yes
8<N<=16

_BitInt(N): 16 < N <= | Signed word 4 No
32

unsigned _BitInt(N): | Unsigned word 4 No
16<N<=32

_BitInt(N):32 < N <= | Signed double-word | 8 No
64

unsigned _BitInt(N): | Unsigned double- 8 No

4.3.4 Other type classes such as Floating Point and Aggregates

Only integral types are affected. Other type classes are not affected, including those smaller
than aword. This includes half-precision floating point values which are smaller than a word. It
also includes aggregate types such as C++ structs and classes that contain integral types that

are smaller than a word.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

Confidential

Page 12 of 16

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

4.4. Software mitigations

4.4.1 Recompile secure state with updated tools

Use updated versions of Arm Compiler for Embedded (armclang), clang, and GCC that
generate code conformant to the updated ACLE CMSE specification. Code-generation for
entry functions has the following changes:

e Parameters of entry functions that are of integral type and size less than aword are
narrowed so that values are within the range of the integral type.

e Returnvalues of non-secure state functions called from secure state that are of integral
type and size less than aword are narrowed so that values are withing the range of the
integral type.

These changes do not change the APl or ABI, and only need to be applied to Secure state. No
changes are required to Non-Secure state.

4.4.2 Change API between Secure and Non-Secure state

If updated tools are unavailable or cannot be used, the weakness can be avoided by changing
the API.

The weakness only applies to function parameters and return values of an integral type with
size less than a word. If the APl between Secure and Non-secure state can be modified to avoid
the affected types then the secure state program will not be affected.

All integral Fundamental Data Types with a size less than a word must be changed to an
alternative word sized integral Fundamental Data Type. For example, a parameter of char type
must be changed to an int type.

If any enumeration types are used in the interface between Secure and Non-Secure state then
both Secure and Non-Secure state must strictly conform to the AAPCS32 on enum-size. For
armclang, clang and GCC this means compiling with the -fno-short-enums option.

Changing the APl also changes the ABI, both Secure and Non-secure state must be updated to
use the new API.

4.4.3 Inline assembly workaround

If updated tools are unavailable or cannot be used, and the API cannot be changed, then in tools
such as armclang, clang and GCC inline assembly can be used to force a zero or sign extension
by Secure state.

For avariable V the statement _asm(™” : “+r” (v)); will tell the compiler that the variable in
the register is being written to which prevents the compiler from assuming anything about its
value.

For example:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Confidential
Page 13 0f 16

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

Using the inline assembly workaround does not require Non-secure state to be rebuilt.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Confidential
Page 14 of 16

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

5 Information for Toolchain
Developers

This information is for toolchain developers who are implementing C language support for
CMSE. Itis assumed the reader is familiar with the Armv8-M security model, how C source
code maps onto this using CMSE, and how function arguments and return values are passed at
machine level following the procedure call standard.

5.1. Is my toolchain affected?
Toolchains are affected if all the following conditions are met:

e Thetoolchainimplements support for Cortex-M CPUs based on the Armv8
architecture or later.

e Thetoolchain supports generation of secure code following the CMSE standard.

e Thetoolchain performs no sanitization in Secure state of arguments or return values of
less than word size that are passed from non-secure code.

5.2. Toolchain solutions

Affected toolchains should be modified to sanitize arguments and return values that are passed
from Non-secure to Secure state where their size is less than a word (see Affected types). The
critical change is to sanitize affected values in Secure state prior to first use. The recommended
approach to sanitizing values is to zero or sign-extend them to word size following the same
rules as used elsewhere in the procedure call standard. It might be possible to optimize away
sanitization if it can be determined that subsequent use of the value cannot lead to adverse
behavior.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Confidential
Page 150f 16

Arm Security Advisory: ASA-010
Security weakness in PCS for CMSE V1.0

6 References

1. Armv8-M Security Extensions Requirements on Development Tools https://arm-
software.github.io/acle/cmse/cmse.html

2. ARMv8-M Secure software guidelines 2.0
https://developer.arm.com/documentation/100720/0200

3. AAPCS32 Procedure Call Standard for the Arm Architecture https://github.com/ARM-
software/abi-aa/blob/main/aapcs32/aapcs32.rst

4. SEICERT C Coding Standard INT32-C
https://wiki.sei.cmu.edu/confluence/display/c/INT32-
C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Confidential
Page 16 of 16

